A Presentation of TeachUcomp Incorporated.
Copyright © TEACHUCOMP, INC. 2014

N
N
Q

Z
K<

MASTERING
INTRODUCTORY
MADE EAS

<

4

TEA@HEE@.MP INC.:

A ..it’ s all about you
"2

9

o
@Q
>
@

MASTERING INTRODUCTORY SGL MADE EAS{TM

s s’
Copyright: Q

Copyright © 2014 by TeachUcomp, Inc. All rights reserved. This publication, or rt thereof,
may not be reproduced or stored in a retrieval system, or transmitted in any form or by*any means,
electronic, mechanical, recording, photocopying, or otherwise, without the express \@1 permission of
TeachUcomp, Inc.

For PDF manuals, TeachUcomp, Inc. allows the owner of the PDF m ah to make up to 2
additional copies of the PDF manual that the owner may place on up to 2 additi n-shared computer

hard drives for ease of use when using the accompanying DVD-ROM tutorj achUcomp, Inc. also
grants unlimited personal printing rights to the owner, strictly limited to urposes of not-for-profit
personal or private education or research.

The unauthorized reproduction or distribution of this copyrighte is illegal. Criminal copyright
infringement, including infringement without monetary gain, is investi o, he FBI and is punishable by
up to five years in federal prison and a fine of $250,000.

Trademark Acknowledgements: Q

IBM and IBM DB2 are registered trademarks of ational Business Machines Corporation.
Windows, Microsoft Excel, Access, Access 2007, Access™2010, Access 2013, Microsoft Access, SQL
Server, and SQL Server 2012 are registered tradem@'k licrosoft Corporation. MySQL and MySQL 5.7,
and Oracle are registered trademarks of Oracle and/onits%affiliates. Other brand names and product names
are trademarks or registered trademarks of their res iverholders.

Disclaimer: Q

While every precaution has been ma he production of this book, TeachUcomp, Inc. assumes
no responsibility for errors or omissions. ny liability assumed for damages resulting from the use of
the information contained herein. Thesﬁr g materials are provided without any warranty whatsoever,

including, but not limited to, the impli ranties of merchantability or fitness for a particular purpose. All
names of persons or companies in l@anual are fictional, unless otherwise noted.

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 2

INTRODUCTION AND OVERVIEW .

Welcome to TeachUcomp, Inc.’s Mastering Intro@%ory
SQL Made Easy™ tutorial. This tutorial is designe@o give
a complete overview of how to use SQL, oriStructured
Query Language, to create and manipulate da@ases.

SQL is a standardized programming | age that is
used to create, edit and delete databa nd database
objects. It is also the language that is to extract, add,
update, and delete data within a dat e. SQL is used in
nearly every aspect of database int lons.

This course will provide the student with the “core,” or
essential, statements within. » Variations of the core
statements for the specific ase systems of MySQL
5.7, SQL Server 2012, a@Access 2013 will also be
referenced by hyperhk to the associated online
documentation for eac tem. The goal of this course to
give the student the.&m wledge of which SQL statement
they will need to u@)to accomplish specific tasks within a
database, as we{as provide links to database-specific
implementatiog@ those core statements.

Qo
&
o
9

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 3

TABLE OF CONTENTS

Chapters/Lessons: Page(s): Chapters/Lessons:

CHAPTER 1- Introduction to Databases and SQL 5 CHAPTER 7- Views 79
1.1- Overview of a Database 6 7.1- About Views 80
1.2- The ‘Flat-File’ Method of Data Storage 7-8 7.2- The CREATE VIEW Statement 80
1.3- The Relational Model of Data Storage 8-13 7.3- The ALTER VIEW Statement 81
1.4- Tips for Creating a Relational Database 13-14 7.4- The DROP VIEW Statement 81
1.5- What is SQL? 14-15 Views- Actions 82
1.6- Using SQL in Access 2013 15 Views- Exercises 83
Introduction to Databases and SQL- Actions 16-17

Introduction to Databases and SQL- Exercises 18 Index of Common Tasks % 84
CHAPTER 2- Data Definition Language 19 O

2.1- The CREATE Statement 20

2.2- The CREATE DATABASE Statement 20

2.3- The CREATE TABLE Statement 20-21

2.4- The CREATE INDEX Statement 21-22 \

2.5- SQL Constraints 22-24

2.6- The DROP Statement 24-25

2.7- The ALTER TABLE Statement 26-27

2.8- NULL Values in SQL 27

2.9- Data Types in SQL 28-29

2.10- Auto-Increment in SQL 29-30

Data Definition Language- Actions 31-35

Data Definition Language- Exercises 36-37

CHAPTER 3- Data Manipulation Language 38 & O

3.1- The INSERT Statement 39

3.2- The UPDATE Statement 39-40 \\

3.3- The DELETE Statement 40

3.4- The SELECT Statement

4
3.5- The WHERE Clause 4 @
43-
4

3.6- Criteria Notation & Wildcard Characters in WHERE Clause
3.7- The ORDER BY Clause 5
3.8- The GROUP BY Clause and Aggregate Functions \

3.9- The JOIN Clause 8
3.10- The UNION Operator 49
3.11- The SELECT INTO Statement 50
3.12- The INSERT INTO SELECT Statement 50-51
3.13- Subqueries 51-52
Data Manipulation Language- Actions @ 53-56

Data Manipulation Language- Exercises 57-59

CHAPTER 4- Data Control Language &a 60
4.1- The CREATE USER and CREATEG tements 61-62

4.2- Privileges 62
4.3- The GRANT Statement 62-63
4.4- The REVOKE Statement 63-64
4.5- The ALTER USER and ALTER ROLE Statements 64-65
4.6- The DROP USER and DROI&OLE Statements 65
Data Control Language- Ac; 66-67
Data Control Languages E S 68
CHAPTER 5- Trans \ntrol Language 69
5.1- The TRANSAC atement 70
Transaction Con ge- Actions 71
e- Exercises 72

Functions and Aliases 73

ing SQL Functions 74

ields and Column Aliases 75

75-76

nctions and Aliases- Actions 77

ons and Aliases- Exercises 78

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 4

CHAPTER 1-
INTRODUCTION TO DATABASES AND SG,

1.1- OVERVIEW OF A DATABASE O
1.2- THE ‘FLAT-FILE' METHOD OF DATA STORAGE %

1.3- THE RELATIONAL MODEL OF DATA STORAGE @Q
1.4- Tips FOR CREATING A RELATIONAL DATABA Q
1.5- WHAT 1s SOL?

1.6- UsING SOL IN Access 2013 Q

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 5

INTRODUCTION TO DATABASES AND SGL <

1.1- Overview of a Database: QE

SQL, an acronym that stands for Structured Query Language, is a standards-based @ uage used
within a relational database management system (RDBMS) A relational database manage t system is
software that stores and manages data. Some relational database management syste@e MySQL, SQL
Server, Access, and SQLite, among others. @/

stem of relational
, edit, insert, query,
se/databases. Therefore,

Before discussing SQL, you should understand the place of SQL within
databases. SQL is used within relational database management systems to
update and delete data. In addition, SQL is used to manage data access within
before you can understand SQL, you must learn some basic concepts abod :
lesson, you will learn some terminology used in relational database designaadSimplementation.

A database is an organized collection of stored data. The term @ se” is often used in different
ways by people with varying knowledge of relational database systems®iMa
used interchangeably with the term “table.” A database is actually a % er or system that holds all of the
tables, queries, and other objects within the relational databas gement system. A “table” is an
organized structure within a database that holds data within its ¢ and rows.

You also need to understand the concept of a “relational dgtabase.” In a relational database, you
store large amounts of data into the smallest possible incre within tables. You then relate these tables
by joining common fields between them. This way, you @Iess redundant data and your database
operates quickly and efficiently. When you relate table.s, @ an access any data in the related tables.

The most fundamental object within a data ' e table. A table is a collection of data about a
certain subject: like customers, vendors or suppliers®™i consists of columns and rows into which you store
data. The columns all contain only one type of datad, are called “fields.” For example, within a customer
table you might have a “First_ Name” field into whi u place only the customer’s first names. The rows in
a table contain one set of related field ir@ about a single entry, and are called “records.” For

a

example, in a customer table you may see er record that contains all of the field information about
a single customer contained within one ro%

Tables are the building blocks ofyal t every other type of database object. Tables contain all of
the data that is to be stored, manipulah&wd retrieved within the relational database management system.
Therefore, almost everything withj database is fundamentally dependent on the tables and their
structure. So, while tables are oft database objects with which new users are most familiar, it is
important not to approach tablgf design haphazardly. Errors made during the creation and design of the
tables will often cause proble - the functionality of the related objects, forcing you to go back and re-
design or edit the table as other related objects if you proceed with your database design too
quickly. Creating weII-d data tables and joining them appropriately is one of the most difficult
aspects of database design. It'is also the most important aspect of database design.

The next type ofﬁatabase object to discuss is the query. The purpose of a query is to extract only
the data that you w, need to view from the tables. These objects are the “heart” of database design-
and the whole pN ing databases. The queries provide the data that is needed by the other database
objects, often ing in the background. So mastering queries will also be an important part of creating a
functional d Q SQL is the language used to create all of the objects within relational database
S S.

se should be simple, logical, and straightforward in its design. In general, data is entered
e data is stored within these tables, which are related to each other as necessary. You use

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 6

INTRODUCTION TO DATABASES AND SQL

1.2- The ‘Flat-File’ Method of Data Storage: Q

In the previous lesson, the term relational database was used. So what does th relational
mean, and how is this important? The term relational describes the method used for storing data within the
database tables. However, it may be easier to understand the relational model %ata storage by
contrasting it with another method of storage that you may be more familiar with: the flat-file’ method.
Information is frequently stored in large ‘flat-files.” For example, assume tr@ want to create a
database file that stores your company’s customer information. You would b listing the different
attributes of the customer that you wish to record. You may want to record %er information like the
“first name,” the “last name,” the “company name,” and other relevant piece
could create a table in an application like Microsoft Excel where you can gre
information that you wish to record. You can then list each customer’s j
the columns, creating a basic table. Assume it looks like the following e

'nformation. Perhaps you
olumns for each piece of
ation in the rows underneath

A B C D E F G
1 |FirstName |~ LastName - Company ~ | Addres - | City - |State |~ | Zip |~
2 lon Doe Cost-Mor 1564 CrestWew Ln. Lansing MI 48841
3 |Henry King Shopalot S6EIMast. Detroit MI 48543
4 |Jenna Smith Shopalot St. Detroit MI 48543
5 |Donetta Smith Smith Manufacturif ain St. Grand Rapids M 48867
For many types of databases, the structur ﬁwould work well. This is a ‘flat-file’ list or table.

is recording a single piece of information, like the
entity- in this example, a customer. The reason that
e given is because for each entity (the customer), you
elationship to the entity.
between the entity (the customer) and the data you are
n? What this means is that for each entity or subject (in this
case- the customer), you are only re information about that entity for which there would only be one
“answer.” For example, each custo@ould only have one “first name” and one “last name.” They would
work for only one “company.” Sqg,the T€fm “1 to 1” refers to the relationship between the subject of the table
(customers) and the data being%cted about the entities. Because for each (one) customer, there is only
one possible piece of dat t(ﬁ in the column, the relationship between the data and the entity is “1 to
1.” If this is the type of dakh at you are trying to create, simple Microsoft Excel tables will work well.

The problem occurs™when you try to use a ‘flat-file’ approach to model a more complex entity or

subject, like “sales.” For gxample, assume you wanted to expand the customer database from the last ‘flat-
file’ database to inc sales data. Now, in addition to the information already being collected, you also
want to record h@)mer sale. First, you would start by listing what data about each sale that you want
to record. Keeping example simple, assume you decide to record the “sale date,” the “items” purchased,
the “quantity” a @ s purchased, and the “amount” paid for each item. You may decide to add the following
columns to atzfile’ data structure.

What you are doing when using this type of dat
“FirstName,” “LastName,” or “Address,” about a Si
this type of data structure works well in th
are only recording information that has a “

So, what does this “1 to 1” relati

” W

recording (“FirstName,” “LastName,” etc.

A B C D E F G H | J K

1 FirstName - |LastName - Company ~ | Address - | City ~ |State - Zip - SaleDate - |Iltems ~ | Quantity - |Amount -~
2 Jon Doe Cost-Mor 1564 Crestview Ln. Lansing MI 48841 1/1/2013 Shoes 1 s 5000
3 Jon Doe Cost-Mor 1564 Crestview Ln. Lansing M 48841 1/1/2013 shoelaces 156 250
4 |lon Doe Cost-Mor 1564 Crestview Ln. Lansing Mi 48841 1/1/2013 Shoe Polish 18 1275
5
6
7

Henry King Shopalot 567 Elm St. Detroit M 48543 TeachUcomp Teacher:

Jenna Smith Shopalot 567 Elm St. Detroit MI 48543 :Ot‘ce thdel redundant data that must
e stored!

Donetta Smith Smith Manufacturing 100 Main St. Grand Rapids M| 48867

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 7

INTRODUCTION TO DATABASES AND S

1.2- The ‘Flat-File’ Method of Data Storage- (cont'd.): Q

This may appear to work, at first glance. However, you will immediately begin to enc@r problems
when you begin to enter records into the file. To begin with, each time a customer makes aptirchase, you
must re-enter all of the “FirstName,” “LastName,” etc. information again. This alone is ir] g enough.
However, you will also soon run into another problem: What do you do whe mer purchases
multiple items in an order? One solution often proposed at this point is to enter an@row (with all of the
redundant information) for each item purchased. However, you will find that thi grow quite quickly
down the table, and you will also have to enter a lot of redundant customer each item purchased.
This is not an elegant solution and will inevitably waste data storage space a@l as the time and effort of

“ltem3,” “Quantity1,” “Quantity2,” Quantity3,” etc.) instead of having to ditional rows of information.
While this may seem like a good alternate solution, what will you do someone purchases 100 items?
Will you really create a set of 3 columns (“Iltem,” “Quantity,” “Amount’or each item purchased, producing a
table over 300 columns across? Would you simply leave the k if the person orders only 1 item,
wasting valuable storage space? In this solution, you are simply stltutlng columnar growth (across) for
vertical growth (down). This is not an elegant solution either
So why is there a problem now, when there wasn tharller’? The answer is that now you are no
longer trying to model a “1 to 1” data relationship in th . Recording sales information is simply more
complex than recording customer information. Wha rying to record now is what is referred to as a
“1 to many” relationship. Basically, for each entity (t tomer), you are now trying to record data in the
‘?Zﬂ

the person who performs data entry.
Another solution often proposed at this point is to create additi Qlumns (like “ltem1,” “ltem2,”
&t

columns which could occur more than once per (the “Items” ordered). You would be in a sorry
state if each customer could only purchase a You must allow for the fact that in a sale, each
customer may order many items. The relati %tween customers and items purchased is a “1 to many”
relationship. When you find that you are tryi odel a “1 to many” relationship, it is then that you must
abandon the ‘flat-file’ method of data stordg ere you try to place all of the information that you want to

record into a single table, and instead tuﬁ t@the relational model of data storage for the solution.

1.3- The Relational Model of Data@qe:

The relational model 0%2 storage allows you to more easily and effectively model a complex
entity or subject, like sales tional model of data storage eliminates redundant data entry and also
creates less data to stor mthe relational database model smaller and faster than the ‘flat-file.’

When you create a tfelational database, you will first need to perform some data modeling. Data
modeling allows you to gnsure that you are recording all of the information needed, and also helps you
identify the entities i ed and their relationships to each other.

When y % a relational database, you need to identify the unique entities involved in the
process that yo odeling. These “entities” will often become the various tables in your database. So,
for example, i ales database example from the last lesson, the “Customer” is an entity. Within each
table create ch entity, you must only list fields, or columns, of information which share a “1 to 1”
iththe entity, or subject, of the table. So for example, in a “Customer” table, you would want to
“FirstName,” assuming that each customer only has a single “FirstName” to record. You
nt to place “ltem” in the “Customer” table, as the relationship between the customer and the

would

iet%@sed is “1 to many.” So what would one do with the column of “Iltem?” In the relational model,
I

wo

d (column) of information is an attribute of an entity. For what entity is “ltem” an attribute? In other
ith what “entity” does the “ltem” (a description of the item purchased) have a “1 to 1” relationship?

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 8

INTRODUCTION TO DATABASES AND SQL

1.3- The Relational Model of Data Storage- (cont'd.):

Perhaps you may initially think that the “ltem” is an attribute of the “Sale.” However, you have
a single “Sale” with multiple “ltems” ordered? Probably so. In that case, it must be an attributé*6f something
else. In this case “ltem” is probably going to be an attribute of an “ltem” entity; n‘@‘.g that you will
probably need to create an “ltem” table.

Many times, when initially approaching data modeling, it may be easier to | % various attributes
that you wish to record, and then try to find what “entities” the attributes describegThe™entities” will become
the various tables in your database. The “attributes” will become columpg within the entity tables.
Remember that each attribute (column) in your table must share a “1 to 1” re @ ship with the “subject” of
the table (the entity).

In either case, you should probably keep your information writte @ n on paper until you have a
rough idea of what information it is that you want to record about tHe,varteus entities involved with the
process or system which you are trying to model. It is a rare feat% your preliminary sketch of the
relational database tables turn out to be the finished model that | actually create in your RDBMS.
Many times you will need to create a model, look for problems e model you have created, and then
edit the design until you are ready to attempt creating the tables.

Let’s take a look at a preliminary model of the “sales’ base from the prior example. First, make a
listing of the various pieces of information that you wan @ord. These become the attributes of the
various entities. Next, try to find what entities these at;rib @ describe and list those too.

Attribute: Belongs to Entity: Attribute: s to Entity: Attribute: Belongs to Entity:
FirstName Customers City stomers ltems ltems

LastName Customers State stomers Quantity Sales

Company Customers Zip Customers Amount Sales

Address Customers Sales

SaleD%

Next, make some sketches Of% les that show the fields of information within them. This can
help you start to visualize what tabl ouwill need to create, and will also allow you to see how the tables
will eventually be related to each ot}%a larger, relational database structure.

Custumer%hle Sales Table Items Table
@7 SaleDate Item
Last e Quantity
Amount

mpanv
Qgﬁdress
ity
\ State

you have a rough idea of what you would like to record and what tables you will need to record
n, you must then ensure that each table has what is called a “primary key.” A primary key is a

combination of columns, that will produce a unique value for each record, or row, in a table.
V%\es, an additional column is added to the tables in order to provide this unique identification. You
can4aSsign each record a unique number in an “ID” column. For example, that is what your social |

the inf
c

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 9

INTRODUCTION TO DATABASES AND SQL N

4

1.3- The Relational Model of Data Storage- (cont'd.):

security number is used for by the government. You also have a unique driver’s license nu @ as well. If
you were recording any of these pieces of information, you could use those as the “primary key”in the table.

If, however, you aren’t recording any type of unique information, then often you m sign your own
unique values. Many companies, for example, assign “Customer ID” numbers in or: niquely identify
each customer. Let’'s look at how your data model will change once you assig ifnary keys” to your
tables.

For example, you need a way to uniquely identify each customer. In the Cusrent data model, there
isn’t any kind of information that would enable you to uniquely identify @ record (row) within the
“Customers” table. So you could add an additional field (column) of informatiof=t0 this table: “CustomerlD.”
Assume that you then add another column for “SalesID” to the “Sales’, % and an “ltemID” field to the
“ltems” table. In the sketch below, each “primary key” field is shown in ithin each table diagram. So,

the data model would look something like this: Q
Customers Table Sales Table Q ems 1 able

CustomerID SalesID ItemID
FirstName SaleDate Item
LastName Qua:itit

Company Amo
Addiss "K\
City @
State

Zip TN t t

The “primary key” is a very imp %oncept in a relational database, because it is through the
primary key assignment that you cre necessary relationships between the data tables. For example,
examine the relationship between t stomers” table and the “Sales” table in terms of the “1 to 1” and “1
to many” relationship. In this ca@sgf‘o ch (1) customer there can potentially be many sales. So, the tables

will share a “1 to many” relatiefiship. This is the most common type of relationship between tables, with
extremely few exceptions. W, need to do next is find a way to join the “many” side of this relationship
to the “one” side of the r @p. You need to relate each entry in the “Sales” table to a customer in the
“Customers” table.

In order to join taples, they must have a shared, or common, field between them. This would be a
field that contains t e kind of data in both tables. So, in this example, you are trying to assign each
sale to a custo this, you would want to add a field to the “Sales” table that corresponds to a field
in the “Customer: . Which field would you choose? The answer is: the “primary key” field!
at each primary key field is designed to uniquely identify each record in the table, so
d"to the “Sales” table that will make a reference to the values in the “CustomerID” field of
e. That way, when you enter a record into the “Sales” table in the future, you will only
(Re “CustomerID” number of the customer to whom the sale was made, practically eliminating
ata entry! So you can see one advantage of the relational model. In this model, you only have to
customer’s data once in the “Customers” table, and then assign them a unique “CustomerlD.”
u then enter sales for that customer into the “Sales” table, you only need to make a reference to

the ropriate “CustomerlID” in the “Sales” record to indicate who made the purchase! This allows you to

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 10

INTRODUCTION TO DATABASES AND SQL

1.3- The Relational Model of Data Storage- (cont'd.):

store much less redundant data, making the relational tables smaller and faster to use t!@re ‘flat-file”
table. It is also important to note that the “CustomerlID” field which is added to the “Sales’ le is not a
primary key! That table already has a “primary key” field in the “SalesID” field, whi(@quely identifies
each sale- like a receipt number. Technically, the field in the “many” table which ma ference back to
the primary key in the “one” table is called a “foreign key.” It's only purpose is to r@he two tables, and
the values within a foreign key are almost always non-unique within the column.

Don’t worry about the mechanics of the data entry, or how to create pri
yet. It will explained in later lessons. For now, just try to comprehend the ¢
the relational database design. Let's examine how the table diagram

created relationship between “Customers” and “Sales.” \
@ns Tahle

ys and table joins just
ts and reasoning behind
ged to reflect the newly

Customers Table Sales Table
CustomerID SalesID (2 ItemID
FirstName SaleDate Item
LastName Quantity Q
Companv Am mm@
Address — (15t
City §<'\
State
Zip

\elationships between the tables. For example, what is the

Don’t be hasty- not every table in the database has to be

ay that customers and items are related is that the customer

he “Customers” and “ltems” do not have a direct connection.

However, in a relational database, ng as every table is connected in an appropriate manner to the

correct table, you can find out how tHey are related to each other through the tables by which they are
connected. In summary, the “Customers” are connected to the “Items,” but only through the “Sales.”

So, how are the “Sa le and the “Items” table connected? Well, for each sale, there may be
many items ordered. Als em may appear in more than one sale! In relational database design, you
cannot (or should not) cre a “many to many” relationship. That would make no sense from a strictly
logical point of view. Yougneed to be able to tell which items were ordered in which sale, while reducing the
0, you may notice another problem with the current data model- the “Amount” field
table. In this context- this field would be the “SalesTotal.” If that is the case, then
e price of each item at the time of sale? What if the price of each item changes in the

Next, you will want to examine the
relationship between “Customers” and “It
directly related to every other table. The @npl

T

purchases the items when making

how can you recg

future? Is the “4 nt” also an attribute of the item?

Wha g@re starting to see is that you need to be able to link the unique sales records to the
unique ite rdered on each sale. You need a “SalesDetails” table in order to do this. But what fields do
you placeto the new “SalesDetails” table? The answer is: anything that is an aspect of the “many” side of

ansaction. For example, the “SaleDate” field can stay in the “Sales” table because each sale
s on a specific date. The “Quantity” of the items purchased at the time of sale is actually part of
y” aspect of the sale and should be moved to the new “SalesDetails” table, along with the “Amount”
e “CustomerID” will stay tied to the “Sales” table, as each purchase is made by a single customer. |

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 11

INTRODUCTION TO DATABASES AND SGL

1.3- The Relational Model of Data Storage- (cont'd.):

So now examine how this new “SalesDetails” table will affect the data model. Q
Below is a diagram of the new tables in the data model. You must also remember thattfie new table

of “SalesDetails” will also need to contain a “primary key” field. @
Customers Table Sales Table SalesDetails Table I able
CustomerID SalesID Quantity
FirstName SaleDate Amount tem
LastName CustomerID
Companv
Address
City
State
Zip

Before assigning the “primary key” field, look at®gow®*you will relate the “Sales” table to the
“SalesDetails” table. The tables are related in that eac ay have one or more items purchased in
each sale. So, you need to join each record in the"4 etails” table to the “Sale” record to which it
corresponds. To do this, you will add a “foreign kem the “SalesDetails” table that corresponds to the
data in the “primary key” in the “Sales” table. So, y il"add the “SalesID” field to the “SalesDetails” table.

Next, examine the relationship between ms” table and the “Sales Details” table. In this case,
for each item ordered in a transaction sh wrﬁe “SalesDetails” table, it must make a reference to a
unique item in the “ltems” table. So, you wik foreign key field of “ltemID” to the “SalesDetails” table.
Then you can “join” the tables through hared” or common fields. Examine how the data table
diagrams in the data model may look aft rming these two tasks.

Customers Table Table SalesDetails Table Items Table
CustomerID alesID SalesID —l_ ItemID
FirstName SaleDate ItemID Item
LastName CustomerlD Quantity
Companv Amount
Address
City Y 4
State
Zip

Now ve created all of the necessary relationships between the tables. However, the
“SalesDetdilst table is still missing a “primary key” field. You could add another field as the primary key,
such as_* sDetaillD.” However, you could also see if there is a combination of fields that already exists
that, v@sombined, produce a unique row value. In fact there is: the combination of “SalesID” plus
| ere should never be a repeating combined value in those two columns. If there were, it would

that the same item was recorded in the same order twice. If that were the case, it should only be

I
_rec d once in the “SalesDetails” table with a “2" into the “Quantity” field. So, assuming that you make _

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 12

INTRODUCTION TO DATABASES AND SGL

1.3- The Relational Model of Data Storage- (cont'd.): Q

this combination of fields the primary key for the table, let's examine the data diagram.
This is the final data diagram based on the information that was needed to rec the sales.

Obviously, there is more information that could be recorded, but this example is only sed to illustrate
some of the decisions that should go into table design before you begin to creat in a relational
database management system (RDBMS).

Customers Table Sales Table SalesDetails Table %ns Table

CustomerID SalesID p— S alesID temID
FirstiName SaleDate ItemID [tem
LastName = CustomerlD Quantity

Company Amount

Address

City

State

Zip

4

1.4- Tips for Creating a Relational Database: \\

While there are no “hard and fast” rules a@ereating relational database tables, there are a few
tips that you should try to follow when beginningédatabbase design. First, examine all current documentation
used to collect and store the information th new want to store in the new database. This step ensures

p

that when you are creating your data tab erforming your data modeling, you won’t leave out a

critical part of your database. Doing that ads to frustrating periods of re-design. Also, consider what
the database will need to contain in ter e views that you need to design. Also consider the need of
the users who will want to run report perform data entry. You should gather information from those

users who need to use the databas@you create.

Next, use the entity/attribute relationship modeling that was discussed in the previous lesson.
This is a helpful first step in disa@vering how your tables should be structured.

When performing da ling, you may want to start by listing the entities, or “subjects” of the
tables, in the database @7 their properties or attributes that you want or need to record. You may
also find it easier to begin Isting the attributes and then trying to discover to which entities the attributes
refer. Once you have accomplished this part, sketch the entities as tables and find or create the primary
keys needed for eac e. Sketch relationships between the tables and list the type of relationship that the
tables share. Abgut 9974 of the time, this will be a “1 to many” relationship.

After you preliminary table sketch, you can then turn to “normalization” guidelines to assist
you in analyzi database structure for its relational “soundness” of design. These guidelines were
created to agsi relational database designer in creating sound relational structures that do not break
any of th unfdational tenets of relational database design. While these are not “rules” per se, you
shouldn’twiolate one of the normalization guidelines without having a very good reason for doing so. If you
decide 0, document your reasoning for making such a break. When a relational database follows one
of lization guidelines, it is said to follow the “form” of the guideline.

%\/hile there have actually been many normalization guidelines proposed, many database designers

find ity adequate to design their relational databases to satisfy the normalization guidelines through the

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 13

INTRODUCTION TO DATABASES AND SQL

1.4- Tips for Creating a Relational Database- (cont'd.): Q

third or fourth normal “forms.”

The first normal form requires atomic, or unique, values at each column and row intefSection in the
entity table. There should be no repeating groups. Thus, no “ltem1,” “ltem2” column @n like you may
see in a ‘flat-file’ table layout.

Second normal form requires that every “non-key” column in a table must nd on the primary
key. A table must also not contain a “non-key” column that pertains to only p composite, or multi-
column, primary key.

The third normal form requires that no “non-key” column should
column. This is very similar to the second normal form. You shouldn’t ha
non-primary key column in a table.

Fourth normal form forbids independent “1-to-many” relationshi
non-key columns.

As you begin your modeling your database tables, be sure cument your work as you create
your initial designs. Correct violations of normal form that you seg ake conscious decisions to override
them. Always document why you chose to make the changes that Y@U do make. After you create your basic
tables and relationships, review your design. Then create t tabase tables and enter some preliminary
or “test” data to see if your design works or how well it s. Reevaluate your design and fix flaws as
required. Always document the reasons that you decige nge the table design.

end on another “non-key”
2ld that is an attribute of a

ween primary key columns and

1.5- What is SQL?:

SQL, pronounced as the individual lette (DQ “L” or often “sequel,” is the language used to
manage and interact with all relational dat anagement systems. While the specific implementation
of the language may vary from vendor to K within database management software, SQL is designed
as a standardized language that is supp implement some basic functionality within these programs.
The standard functions include running quéfies on data, modifying the data within the tables, displaying
views of the data, and creating and g database structures and data access.

Since the purpose of using fairly narrowly defined, you may find that SQL seems very simple
when compared to other progra{jT nguages. SQL, as a “standard” language, is jointly governed by the

ISO (International Organizati for Standardization) and the IEC (International Electrotechnical
Commission). However, mo rs have included their own vendor-specific extensions to the language.
Therefore, you will often mr vendor-specific variations to the standard SQL when it is encountered in
real-world applications. TheSg vendor-specific implementations will often have their own names, such as
the “Transact-SQL” that js used within Microsoft SQL Server, for example. The “core” SQL, as defined by
the IEC and ISO, j andatory and supported by all of the major database management systems,
regardless of thei pecific implementations and extensions. This course will most often refer to the
core SQL within_itSyexamples, but will also reference variations used by specific implementations within
agement systems, when needed. The core SQL statements you will learn, which have

manage a base. Also, most RDBMS implementations, such as SQL Server and Microsoft Access, will
require 0 add a semicolon to the end of any executable SQL statements you create. While this is a
standafd has been widely implemented, note that the examples of the core SQL shown in this course

w a semicolon at the end of the examples shown, as they are simply demonstrating the core
can be used and are not literal examples of SQL for any specific relational database management
system, unless otherwise specified by the example.

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 14

INTRODUCTION TO DATABASES AND SGL <

1.5- What is SQL?- (cont'd.): Qs]

The statements within standard SQL can be thought of as being grouped into four ries: Data
Definition (alt. Description) Language (DDL), Data Manipulation Language (DML), Data Contfol Language
(DCL) and Transactional Control Language (TCL). The statements within the Data %’;ion Language,
such as CREATE, ALTER, and DROP, allow you to create the database contajagr, les, and other
objects. The statements within the Data Manipulation Language, such as SELECT, @'-- RT, and UPDATE,
allow you to manage the data contained within the tables. The Data Control Langtiz tatements, such as
GRANT and REVOKE, allow you to determine who can access data within the database and set referential
integrity. The Transactional Control Language statements, such as COMMIT @ ROLLBACK, manage the
actual transactions that occur within a database. The SQL statements mg *n thought of by new SQL
users are contained within the DML statement set. This is where you w e SELECT statement, which

is used to create queries on the data, as well as the INSERT, UPDATE, anthDELETE statements used to
add, edit and remove data from tables.

The most current revision of the ANSI standard of SQL, as,0
This is the seventh revision of the SQL standard. The most i % ing, but optional, new feature of this
revision is that it includes new standards for support and impl€mentation of temporal databases. A
“temporal database” is a database that supports extensive@wan ing involving time. This is contrasted

is writing, is the SQL:2011 version.

with most databases, which are referred to as “current dat es,” in that the data contained within them is
assumed to be true currently, until the data is delete.d ated. In a temporal database, however, each
record is often qualified with a valid date/time stam \\O te/time period, or valid date/time interval. This
can then indicate the time duration of when that in n was deemed to be “valid,” or true. Note that
most users will not be dealing with temporal data and vendor implementation of this new standard is
still not widespread as of 2014, although both | and Oracle have implemented queries that address

this issue with their respective “Time Travelgr Queries” and “Flashback Queries.”

1.6- Using SOL in Access 2013:

This tutorial references usin in Access 2013. Access 2013 is a RDBMS that creates self-
contained databases and provides tools to allow users to make relational databases without the need
for SQL. As such, there are few place®to use SQL in Access. You can enter SQL into the “SQL View” of a
query when creating a query inﬁ%?ss. You can also enter SQL into modules you design or into any “Code
Builder” attached to form 0@4 ithin a database. Note, however, that Access may not interpret these
SQL statements in Acces&e nless you enable ANSI-92 compliance within the current database file.

To do this, create a“hew database file within which you want to enter SQL statements in Access
2013. Click the “File” tab within the Ribbon and then click the “Options” button at the left side of the
backstage view to o e “Access Options” window. Click the “Object Designers” category at the left side
of the “Access I@window to display the category options to the right. Under the “Query design”
header, check %eckbox for “This database” under the “SQL Server Compatible Syntax (ANSI 92)”
section. Then the “OK” button within the “Access Options” window. Access will display a message
onscreen te it will need to close, convert, and re-open the current database to apply this change.

Click the “@® button within the message to continue and convert the database.

otihcan then enter the SQL commands within this tutorial within the “SQL View” of the query design
windo ell as within modules or any “Code Builder” areas associated with form objects that you create.
Yeu'c o use the database to connect to external data within SQL Server to execute SQL statements

b ing SQL within the Access database.

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 15

ACTIONS- “
INTRODUCTION TO DATABASES AND SQG o

DATABASE OBJECTS:

A table is a collection of data about a certain subject: like customers, vendors or supplie@consists of
columns and rows into which you store data.

A field is a column within a table. Fields all contain only one type of data. For examp
table you might have a “First_ Name” field into which you place only the customer

A record is a row within a table. A record contains one set of related field informat
For example, in a “Customer” table you may see a customer record th
information about a single customer contained within one row.

A query is used to extract only the data that you want or need to view fro
the “heart” of database design- and the whole point of using databases=QUeries provide the data that is
needed by the other database objects, often working in the backgroug .

SQL is the language used to create the objects that exist within relationaldatag

out a single entry.
ins all of the field

@ ables. These objects are

ase management systems.

A database is the entire collection of tables, queries and other related ts.

A relational database management system (RDBMS) is s used to create and maintain a
database.

THE PURPOSE OF A DATABASE: Q

A database should be simple, logical, and straightf® Q—u its design. In general, data is entered into
tables. The data is stored within these tables, wihichNare related to each other as necessary. You use
gueries to extract specific information from t es in the database. The queries often form the
basis for view and reports, which allow you t% the information requested. This is the main reason
that you use databases: to enter, store, and leve data.

THE FIRST 4 FORMS OF NORMALIZATI%

First normal form requires atomic, or , values at each column and row intersection in the entity table.
There should be no repeating . Thus, no “ltem1,” “ltem2” column design like you may see in a
‘flat-file’ table layout.

Second normal form requires tﬁevery “non-key” column in a table must depend on the primary key. A
table must also not con “non-key” column that pertains to only part of a composite, or multi-
column, primary key.

Third normal form require t no “non-key” column should depend on another “non-key” column. This is
very similar to the s?ond normal form. You shouldn’t have a field that is an attribute of a non-primary
key column in a 4

Fourth normal form s independent “1-to-many” relationships between primary key columns and non-
key columns.

%‘b

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 16

ACTIONS-
INTRODUCTION TO DATABASES AND SGL

-

Create a new database file within which you want to enter SQL statements in Access 20@

Click the “File” tab within the Ribbon.

Click the “Options” button at the left side of the backstage view to open the “Access

Click the “Object Designers” category at the left side of the “Access Options”

category options in the area to the right.

5. Under the “Query design” header, you can check the checkbox for “This

Server Compatible Syntax (ANSI 92)” section.

Click the “OK” button within the “Access Options” window.

Access will then display a message onscreen that tells you it will need te

current database to apply this change. Click the “OK” button within the¥g

the database.

8. You can then enter the SQL commands within this tutorial within
window as well as within modules you create.

9. You can also use the database to connect to external data@v SQL Server to execute commands

hon=

N o

s€, convert, and re-open the
gsage to continue and convert

SQL View” of the query design

against the tables by using SQL within the Access database.

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 17

EXERCISES-

N

___INTRODUCTION TO DATABASES AND SGL.\ *
Purpose:
1. To be able to install and use an SQLite desktop relational database system for use icises.

Exercises:

The exercises in this tutorial will use SQLite, a no-installation, open
application. You will simply need to download the “Precompiled Bina
from the following web page to use the software:

1. Open your computer, connect to the Internet, and open your favorite web%

e, desktop database
our operating system

Special Note: If using Mac OSX (or Leopard), the SQLite a |on is pre-installed in your
operating system and there is no need to download a copy of ries, if your prefer. However,
to run the examples in this tutorial, you must first open the “Te application within the “Utilities”
folder in the “Applications” folder within a “Finder” windo% must then enter the following

within any of the Exercises within this tutorial. Note that |

do not want to do this, then you may

statement sqglite3 test.db instead of the .open test.db stQ whenever that statement is issued
u

the manual suggest, as well.

also download the binaries for Mac OSX to a foldeése em just as the instructions shown in
s

3. After downloading the file, unzip the file to extra
“sqlite” app for Mac.

glite3.exe” application for Windows or the

4. You can double-click the “sqlite” file that y% extracted to open the “SQLite” command shell
i

application within either a Command Prom
Terminal window within the Mac operatin

5. You can close the “Command Prompt” o
application. N

6. The exercises within this tutorial wij

w within a Windows operating system or within a
|naI windows to close the connection to the SQLite

upon one another. It is recommended that you complete

them in sequential order to maxi ur understanding of SQL with the hands-on exercises. You
will need to open SQLite for the e se at the end of the next chapter, however, you can close the

application for now. @

s\O

o
&Q
>
.

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™

18

http://sqlite.org/download.html

CHAPTER 2-
DATA DEFINITION LANGUAGE

2.1- THE CREATE STATEMENT

2.2- THE CREATE DATABASE STATEMEN

* 9
L

2.3- THE CREATE TABLE STATEM

ENT O

2.4- THE CREATE INDEX STATEME

E

2.5- SOL CoNSTRAINTS 0

2.10- AuTto-I

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™

19

DATA DEFINITION LANGUAGE

\’
2.1- The CREATE Statement: Qs ,

The first statement that you will learn in SQL is the CREATE statement. The CRE atement is
often the first statement that you will execute in SQL if you are using SQL to design a da se within a
relational database management system.

This statement is commonly used to create a database, table, index, or store dure. However,
within some implementations, such as “T-SQL,” you will find that the CREATE st t can make many
types of database objects, including indexes and schemas.

2.2- The CREATE DATABASE Statement:

Within many relational database management systems, the CR QATABASE statement is used
to create the database. The core SQL of the statement is shown bel%

CREATE DATABASE database name Q
n

In this statement, the “database_name” parameter is_the e you want to give to the database.
Note that while most versions of SQL will require a semic%the end of the statement, some may not.
Also, not every vendor implements this SQL comman icrosoft Access, for example, you create a
database using the graphic user interface. SQLiteosimses its own separate command of “sqlite3
database_name” to create a database. x}

While this is the bare-bones version of the ent, many vendors will also follow this statement
with many vendor-specific clauses that will defin pecific characteristics of the database. In MySQL
5.7, for example, the statement “CREATE SCH a synonym for “CREATE DATABASE.”

The following is a listing of hyperli isplays the vendor-specific SQL used and the various

clauses available for the CREATE DATA tatement within MySQL 5.7 and SQL Server 2012. Note
that this statement is not available as an tement within Access.
MySQL 5.7:

SQL Server 2012: \

2.3- The CREATE TABLE Statement:

One of the @' ommonly used SQL statements when creating a database is the CREATE TABLE
statement, which ed to create tables within a database. The general syntax is shown below.

_type(size),
ata_type(size),
data_type(size),

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 20

http://dev.mysql.com/doc/refman/5.7/en/create-database.html
http://technet.microsoft.com/en-us/library/ms176061.aspx

DATA DEFINITION LANGUAGE

2.3- The CREATE TABLE Statement- (cont’d.): Q

The “table_name” parameter is the name you want to assign to the table. TIQeId_name”
parameters are the names of the fields, or columns, within the table. The “data_type” parameter is the
declaration of the data type of each field. Each vendor will have vendor-specific namgS fer the data types
available. You should check the documentation for the database management sy, fLyou are using to

define the number of characters to store within the field.

While the above CREATE TABLE statement is the core SQL gtanddrd, you will find that the
statement tends to be more complex within the actual vendor impl % tions. Below is a listing of
hyperlinks that display the SQL used to implement the CREATE TABLQa ment within MySQL 5.7, SQL
Server 2012, and Access 2013.

MySQL 5.7: Q

SQL Server 2012: Q
O

Access 2013: \\

2.4- The CREATE INDEX Statement: \< E

Within a database, indexes are a %f sorting a table by values contained in one or more fields.
The advantage to creating indexes is ths; may speed up query processing when used. However, as
the user of the database manageme tem, most of the time you can only choose to create indexes
within the tables, not when they wiII@ed. The database management system will decide when, and if, to
use those indexes that you have m available. While there are some vendor-specific exceptions, this is
most often the rule.

Take care when creating exes to ensure you do not create many, unnecessary indexes on fields
that will rarely, if ever, befg % . It is possible to actually decrease query performance by including many
unnecessary indexes on tables within the database. Here are some general guidelines to assist you in
deciding what indexes to create on the tables within your database. First, only index tables that have a
variety of different d t%es within their fields. Second, indexing is more efficient if the data in your indexed

fields gives ea a more unique identification, like a primary key field. Indexing is not usually
necessary on fiel have multiple, repeating values. Third, you really only need to index fields which
are used for ¢ a ih queries. For example, if you are creating many queries that find records based on
phone num NYOou may want to create an index on the field which contains the phone numbers.

ble fields have met these criteria, it can be useful to apply an index to the desired fields to
ing and processing capabilities of data in queries.
re SQL statements used to create indexes are shown below. Note that there are two different

3%@%@ to create an index that only allows unique values and an index that allows duplicate

Assuming
increase

Iso, be aware that the syntax for creating indexes varies between relational database management
syst , S0 you should check the documentation for the system that you use.

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 21

http://dev.mysql.com/doc/refman/5.7/en/create-table.html
http://technet.microsoft.com/en-us/library/ms174979.aspx
http://msdn.microsoft.com/en-us/library/office/ff837200.aspx

DATA DEFINITION LANGUAGE

To create a standard index that allows duplicate field values:

2.4- The CREATE INDEX Statement- (cont’d.): Q

CREATE INDEX index_name

ON table_name (field_name) ®®

To create a unique index that does NOT allow for duplicates field values:
CREATE UNIQUE INDEX index_name O

ON table_name (field_name)
Note that in the previous examples, “index _name” is the nam&ént to give to the index. The
“table_name” parameter is the name of the table that contains the to index, and the “field _name”

parameter is the name of the field within the table to index.

Also note that many relational database management syg s will allow for the creation of a multi-
field, or composite, index. This is often created when the two fields have a logical relationship to one
another- such as a “First. Name” and “Last_Name” field. ile the implementation of composite index
creation will vary by RDBMS, the general syntax is as follo
CREATE INDEX index_name ’\

ON table_name (field_namel, field_name?2)

Like many SQL statements, you will fin EATE INDEX statement tends to be more complex
within the actual vendor implementations. If, womld like to view the SQL used to implement the CREATE
INDEX statement within MySQL 5.7, SQL 012, and Access 2013, you can find that information at
the following hyperlinks. @

MySQL 5.7: A

<

SQL Server 2012: &
Access 2013: @

| V4
2.5- SQL Const@

When Qg tables in SQL using the CREATE TABLE statement, you can often set various types

of constrai fields that are created. A constraint is a limitation that is placed upon the allowable

values within'a,field. If a user attempts to add data to the table that violates the constraint, the data will not
e table.

that while constraints are most often added to a table when using the CREATE TABLE

, you may also use the ALTER TABLE statement in SQL to later add constraints to an existing

any relational database management systems. In a later lesson you will see that you can use the

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 22

http://dev.mysql.com/doc/refman/5.7/en/create-index.html
http://technet.microsoft.com/en-us/library/ms188783.aspx
http://msdn.microsoft.com/en-us/library/office/ff823109.aspx

DATA DEFINITION LANGUAGE

2.5- SOL Constraints- (cont’d.): Q

ALTER TABLE statement to make changes to the structure of existing tables within a datab
The core SQL syntax to apply constraints when using the CREATE TABLE state t is shown

below. %

CREATE TABLE table_name (field_name data_type(size) constraint_name, field @el data_type(size)
constraint_name, etc.)

LT3

Note that the “table_name,” “field_name,” “data_type,” and “size” p @ ters all serve the same
function within this statement as they perform within the standard CREASE TABLE statement. The
“constraint_name” parameter is the name of the constraint to apply to th % he following constraints are
allowed in the core SQL. §

NOT NULL is a constraint that you can specify to ensure that
as a valid data entry. A NULL value occurs when no data entry j
NULL value is not equal to an empty text string, a literal spac acter, or a zero value. Those are all
known quantities. A NULL value is simply unknown due to a lackgof data entry. Primary key fields and
unique index fields cannot contain NULL values. However, an also specify NOT NULL to disallow null
values in fields, regardless of whether or not the field is a primary key field or is uniquely indexed.

UNIQUE is a constraint that you can specify’thures that all values entered into the field are
unique values. There can be no repeating values withi eld defined with a UNIQUE constraint.

PRIMARY KEY is the constraint that is spec% define a field (or combination of fields) within a
table as being the primary key of the table. Rem at primary key fields must contain unique values
and cannot contain NULL values. Therefore, y think of the PRIMARY KEY constraint as being a
combination of the UNIQUE and NOT NULL cepstraints.

FOREIGN KEY is the constraint th can specify to ensure that all values within the field
correspond to values found within another% PRIMARY KEY field. This is used as a referential integrity
check to ensure that records within a fiel a corresponding, or “matching” value within a related table.

CHECK is a constraint that is to specify the allowable values that can be entered into a table.
For example, if you had an “Custo ” field defined within a CREATE TABLE statement, you could add
CHECK (CustomerID > 0) to the @TE TABLE statement to specify that any values entered into the
“CustomerID” field must be val greater than zero.

DEFAULT is a constr't places a default value into the field specified when a record is entered.
For example, if you Wante ‘East Lansing’ appear as the default value for a “City” field within a table
i

eld will not accept NULL values
rmed within a field. Note that the

when creating the table REATE TABLE statement, you could add DEFAULT ‘East Lansing’ as the
“constraint_name” parameter 1o the “City” field when it is created.

Note that the im[ﬁmentations of the SQL constraints will vary from vendor to vendor. While almost
all of these constra@re universally implemented, they are implemented in slightly different ways within
each relational e management system. The following hyperlinks will show how to use SQL
constraints withi QL 5.7, SQL Server 2012, and Access 2013.

SQL Consttain SQL 5.7):

%‘b

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 23

http://dev.mysql.com/doc/refman/5.7/en/constraints.html

DATA DEFINITION LANGUAGE

Primary Key and Foreign Key Constraints (SQL Server 2012):

2.5- SOL Constraints- (cont’d.): Q

Unique Constraints and Check Constraints (SQL Server 2012):

The CONSTRAINT Clause (Access 2013): %Q

2.6- The DROP Statement: g
The DROP statement is used within SQL to delete created &ba objects. You can use this

statement to delete databases, tables and indexes. You can als it in conjunction with the ALTER
TABLE statement to delete fields from tables. Note that this is N statement used to delete specified
data from tables. You can delete specified data from tables by he SQL DELETE statement, instead.
The following statement shows the core SQL used to dglete atabase. Note that the parameter
“database_name” is the name of the database to delete.

DROP DATABASE database _name * O

The next statement is the core SQL state \a\ed to delete a table within a database. Note that
the “table_name” parameter is the name of the ta in the database to delete.

DROP TABLE table_name \0

Note that while you cannot select@is to delete with the DROP statement, there is a statement
that is considered part of the data definitgn nguage in SQL that will delete a table and then re-create the
table, thereby effectively deleting a ds from the table. This statement is the TRUNCATE TABLE
statement. Because it deletes and @e-creates the table, versus selecting individual records to remove
from a table, it is considered part o data definition language versus the data manipulation language.
The following statement shows4he core SQL used within the TRUNCATE TABLE statement. Note that the
“table_name” parameter ii t of the table to delete and then re-create.

TRUNCATE TABLE table_ e
essentially DR I , however, it is implemented in slightly different ways within various relational

database mana nt systems. The following statement shows the core SQL used within the DROP
INDEX statem ote that the “index_name” parameter is the name of the index to delete.

You can als,@(the DROP statement to delete table indexes. The core SQL of this statement is

DROP IN index_name

plementation of this statement within Microsoft SQL Server is slightly different from the core
S@r, i t the parameter needs to know the name of the table associated with the index as well as the
i%me. The following example shows the DROP INDEX statement in SQL Server. Note that the
“table®hame” parameter is the name of the table associated with the index to delete and the “index _name” |

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 24

http://technet.microsoft.com/en-us/library/ms179610.aspx
http://technet.microsoft.com/en-us/library/ms187550.aspx
http://msdn.microsoft.com/en-us/library/office/ff836971.aspx

DATA DEFINITION LANGUAGE

parameter is the name of the index to delete.

\’
2.6- The DROP Statement- (cont’d.): Qs

DROP INDEX table_name.index_name; %
In MySQL, the DROP INDEX statement is only used within the ALTER statement. So, if
using MySQL, the statement would be entered as shown below. Note that the 4 “hame” parameter is

the name of the table associated with the index to delete and the “index_na meter is the name of
the index to delete. 6

ALTER TABLE table_name DROP INDEX index_name Q

Below is a listing of hyperlinks that demonstrate the various im ntations of the DROP statement
within MySQL 5.7, SQL Server 2012, and Access 2013.

MySQL 5.7 (DROP DATABASE): Q
Q\< >
MySQL 5.7 (DROP TABLE): \'

SQL Server 2012 (DROP TABLE): \0
SQL Server 2012 (TRUNCATEQBLE):

MySQL 5.7 (DROP |NDES$\O
/

sQL Server (DRO{@X):
Access 2013 Q Statement)

%‘b

SQL Server 2012 (DROP DATABASE):

MySQL 5.7 (TRUNCATE TABLE):

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 25

http://dev.mysql.com/doc/refman/5.7/en/drop-database.html
http://technet.microsoft.com/en-us/library/ms178613.aspx
http://dev.mysql.com/doc/refman/5.7/en/drop-table.html
http://technet.microsoft.com/en-us/library/ms173790.aspx
http://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
http://msdn.microsoft.com/en-us/library/ms177570.aspx
http://dev.mysql.com/doc/refman/5.7/en/drop-index.html
http://technet.microsoft.com/en-us/library/ms176118.aspx
http://msdn.microsoft.com/en-us/library/office/ff821409.aspx

DATA DEFINITION LANGUAGE \

2.7- The ALTER TABLE Statement: Qs ,

You can use the ALTER TABLE statement in SQL to modify the structure of an existble in your
A1C

database. You may do this to add SQL constraints to the tables or fields in the table if you ot do them
when initially creating the table. Some relational database management systems may llow you to use
the ALTER TABLE statement to assign a PRIMARY KEY constraint using the AL BLE statement,
although that is much more likely to be required within the CREATE TABLE stat in most systems.

You can also use this statement to add, edit, or delete fields within a table, if nee

The core SQL of the ALTER TABLE statement when used to add a fie
Note that the “table_name” parameter is the name of the table into which y
“field_name” parameter is the name of the field, and the “data_type” para

table is shown below.
nt to insert the field, the
e data type of the field.

ALTER TABLE table_name K
ADD field_name data_type

The core SQL of the ALTER TABLE statement when usg delete a table field is shown below.
Note that the “table_name” parameter is the name of the table fromahich you want to remove the field and
the “field_name” parameter is the name of the field to delet€™\ote some database systems will not allow
you to delete a column. Others simply require that any PRI KEY or FOREIGN KEY constraints on the

column first be removed before the field is deleted to Rro@ue referential integrity of the database.

ALTER TABLE table_name 5\'\
DROP COLUMN field_name @

You can also use the ALTER TA L@ement to modify the data type of fields or add SQL
constraints to fields within a table. Note tha QL used to accomplish this will vary more significantly

with each relational database manageme m. The core SQL for most systems is shown below. Note
that the pipe symbol is used to denoté, a ate commands in different systems and the parenthetical
commands are either required or n e again depending upon the RDBMS used. In the examples

shown, “table_name” is the name table, “field_name” is the name of a field, “data_type” is the data
type of the field, and “sqgl_constrain e SQL constraint. The next example shows the core SQL used to
change the data type of a field \Qn a table.

ALTER TABLE table_na

MODIFY | ALTER COLU 1efd_name data_type

The next example showsfthe core SQL used to add or remove an SQL constraint.
ALTER TABLE t e

ADD | DROP (RAINT) sqgl_constraint

ALTER T statement within MySQL 5.7, SQL Server 2012 and Access 2013.

M%{b-

Tf@l hyperlinks contain helpful information about the vendor-specific implementation of the

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 26

http://dev.mysql.com/doc/refman/5.7/en/alter-table.html

DATA DEFINITION LANGUAGE

SQL Server 2012:

2.7- The ALTER TABLE Statement- (cont’d.): Q

Access 2013: %
2.8- NULL Values in SQL: Ob

When creating tables in SQL, you will need to deal with NULL va @ A NULL value is a value that
is unknown. These values can occur within database tables when a usef whefs performing data entry skips
entering a value into a field. When a value is not entered, it is said ’@Q LL value. Note that a NULL

value is not equal to anything, as the value is unknown. It is not equal tojzero or a blank text string, such as
“”_ It is also not greater than or less than any other value. Howev ill need to decide how to deal with
NULL values when creating fields within tables. You can often ct@to disallow NULL values within fields
by using the NOT NULL SQL constraint when creating the figlds in artable. UNIQUE, PRIMARY KEY, and
FOREIGN KEY fields also cannot contain NULL values hinsthem, as NULL values would disrupt the
relational abilities of the tables. Note that unless the NO SQL constraint in employed when creating
the fields within a table, the field will typically default t® g NULL values.

You have some SQL statements to assist y &aling with NULL values within table fields. Since
NULL values are not comparable to other existin , you cannot use the equal, greater than, or less

than sign within a SELECT statement in SQL to fi L values within fields. When creating queries using
the SELECT statement, you will often need to e IS NULL or IS NOT NULL statements within the
SELECT statement to find values within fie e the value is either NULL or not NULL. While we have

not yet examined the SELECT statement,
you can examine how the IS NULL a
SELECT statement to find NULL values.

The core SQL of a simple S

is covered within the Data Manipulation Language chapter,
OT NULL clauses can be added to the core SQL of the

statement is shown below. In this example, “table_name” is the
name of the table, “field_nam the name of the field(s) to display in the query, and
“field_name_to_compare” is the gname of the field within which you want to find NULL values or find values
that are not NULL. The next ex&e shows the core SQL used to find null values within a field.

SELECT field_name, fieI%@, field_name2, etc. FROM table_name
Cco

WHERE field_name_to_ re IS NULL

4

The next le will find any values where there is NOT a NULL value within the
“field_name_to - rmp field.

SELECT fieId_@ﬁeld_namel, field_name2, etc. FROM table_name

WHERE 1& to_compare IS NOT NULL

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 27

http://msdn.microsoft.com/en-us/library/ms190273.aspx
http://msdn.microsoft.com/en-us/library/office/ff196148.aspx

DATA DEFINITION LANGUAGE

2.9- Data Types in SOL:

When creating table fields in SQL, you must assign each field a data type. Howeve@data types

available to use will vary for each relational database management system you encounter.

you will examine some of the most commonly encountered general data types in SQL.

CHARACTER(N)

Description

Fixed-length text, or character, string. N specifies tr%nber of fixed

characters in length that the field will contain.

VARCHAR(N) or Variable-length text, or character, string. N sg ies the MAXIMUM number
CHARACTER of characters that the field can contain @

VARYING(N) '

BINARY(N) Fixed-length binary string. N specifies d length.

BOOLEAN Stores a TRUE or FALSE value.

VARBINARY(N) or

BINARY VARYING(N) Variable-length binary string.

ecifies the MAXIMUM length.

INTEGER(P) Integer number values, wit @ ecision of P.
SMALLINT Integer number values'With &,precision of 5.
INTEGER Integer number valu a precision of 10.
BIGINT

Integer number valueg,with a precision of 19.

Stores an ex %er with a precision of P and a scale of S. For example,
a DECIMAL(ould store a number that has 7 digits before the decimal
point and 2!i after the decimal point, with a total of 9 digits stored.

Approxiffiate-number data types for use with floating point numeric data.
Floati nt data is approximate; therefore, not all values in the data type
FLOAT(P) raﬁcan be represented exactly. P is the number of bits used to store the

DECIMAL(P,S) or
NUMERIC (P,S)

issa of the float number in scientific notation and, therefore, dictates the

REAL
FLOAT or DOUBLE ¢

PRECISION 9
DATE
TIME ‘&

Approximate-number data with a mantissa precision of 7.

Approximate-number data with a mantissa precision of 16.

Stores year, month, and day values.

Stores hour, minute, and second intervals.

Stores year, month, day, hour, minute, and second intervals.

Contains a number of integer fields, representing a period of time,
depending on the type of interval.

A fixed-length, ordered set of elements.

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 28

DATA DEFINITION LANGUAGE

N

2.9- Data Types in SQL- (cont’d.):

Description
MULTISET A variable-length, unordered set of elements. %
XML Stores XML data.
MONEY, Stores a data type that represents monetary values MONEY store a
SMALLMONEY or smaller ranges of values than MONEY. Not imple in MySQL or
CURRENCY Oracle RDBMS. é

Note that the specific data type to use for your particular RDBMS ry. Some, such as MONEY,
are not available within some RDBMS at all. Others, like INTEGER, stated as INT within SQL Server
2012 and MySQL. Note that you should always check your specific R documentation for the specific
data types and names that are available for you to use.

You can find the listing of available data types for MySOQ SQL Server 2012, and Access 2013

at the following hyperlinks.
O
SQL Server 2012: 5\\

MySQL 5.7:

2.10- Auto-Increment in SQL:

Access 2013: \o(b
0

Many times when creating @ary key field within a table, you will assign the field a numeric data
type. You can use the “Auto-Increment®feature when creating this field in many relational database systems
to automatically increase the inﬁjent used within this numeric field to ensure that each record entered will
receive its own unique ide n number. However, the implementation of this feature varies widely
amongst the individual I]@al database management systems. There is no core SQL for the
implementation of this specCific feature. You must check the documentation for your specific RDBMS to

create a primary key field,that contains auto-incrementing numeric values. Below is the general SQL syntax
used to denote an a crement field when creating a table in MySQL.

(
field_name | NULL AUTO_INCREMENT,
field_nam _typel, sqgl_constraints1,
PRIMAR field_name
A0
the MySQL example shown, you add the “AUTO_INCREMENT” constraint at the end of the field
_to defifie it as containing auto-incrementing values. Note that this field was also assigned the "Int” data type

CREATE TABLEN: “hame

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 29

http://dev.mysql.com/doc/refman/5.7/en/data-types.html
http://msdn.microsoft.com/en-us/library/ms187752.aspx
http://msdn.microsoft.com/en-us/library/office/ff193793.aspx

DATA DEFINITION LANGUAGE \

2.10- Auto-Increment in SQL- (cont’d.): Qs

so that it will contain numeric integer values. It was also assigned the NOT NULL SQL cot so that it
O

cannot contain NULL values. The last line of the syntax used the PRIMARY KEY constrai define the
field as the primary key of the table. Note that when you add records to this table in uture using the
INSERT statement, you will not need to specify a value for the auto-incremented fi ill automatically
assign a number when a new record is added. The field will begin with the number u wish to start at a

different number, you can use the ALTER TABLE command to set the sta mber by using the
following general syntax in MySQL. Note that the “number” parameter shown_i number at which you
want the auto-incrementing field to begin numbering. O

ALTER TABLE table_name AUTO_INCREMENT=number Q
)

If using Microsoft SQL Server, you will use the IDENT constraint to specify auto-
incrementing field values when creating the table. Note that whe ing the IDENTITY constraint, the “x”
parameter specifies the starting number of the field and th parameter specifies the increasing
numbering sequence to use. For example, IDENTITY(1,1) will crégle a field that starts numbering at the
number 1 and increases its value by 1 for each future reco ded. Alternately, IDENTITY(10,2) will start
numbering at 10 and increase consecutively by 2 for each reegrd added (10, 12, 14, 16, etc.). As with many
other RDBMS implementations, however, you will not nespecify a value for the auto-incrementing field
when using the INSERT statement to add records t able in the future. The general syntax for creating
an auto-incrementing field within SQL Server in the %E TABLE statement is shown below.

CREATE TABLE table_name @
< O,
field_name INT IDENTITY(x,y) PRIMARY K
field_namel data_typel,

o

If using Microsoft Access, @;an basically substitute the keyword AUTOINCREMENT for the
IDENTITY keyword as used with SQL Server to create an auto-incrementing field within a table in the
CREATE TABLE statement. an simply use the AUTOINCREMENT keyword by itself to create an
auto-incrementing field tiat @- at 1 and numbers in increasing values by 1. You can also use the
AUTOINCREMENT(x,y) kéywOoFfd variation to specify both a starting number and a numeric increment by
which to increase the values dssigned. The general SQL syntax for creating an auto-incrementing primary
key field within a Microsgft Access table is shown below. Note that, in Microsoft Access, you do not need to
specify a “data_typ ameter when creating an AUTOINCREMENT field. This field also corresponds to
the “AutoNumbe ype used when creating tables in the visual “Design” view of a table within the
Microsoft Acch ace. In this way, AUTOINCREMENT is also a declaration of data type within this

particular RD

CREATE table_name
(field_% UTOINCREMENT PRIMARY KEY, field_namel data_typel, etc.);

@

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 30

ACTIONS-
DATA DEFINITION LANGUAGE

THE CORE SQL OF THE CREATE DATABASE STATEMENT:

CREATE DATABASE DatabaseName

THE CORE SQL OF THE CREATE TABLE STATEMENT:

(
field_namel data_type(size), O

field_name2 data_type(size),

field_name3 data_type(size), Q
) K

CREATE TABLE table_name ;‘Q

D

THE CORE SQL OF THE CREATE INDEX STATEMENT: Q

1. To create a standard index that allows duplicate field va@

CREATE INDEX index_name . O

ON table_name (field_name) \

2. To create a unique index that does NOT aIIOWW icates field values:

CREATE UNIQUE INDEX index_name 0
ON table_name (field_name) \

THE CORE SQL USED TO APPLY SQ STRAINTS:

CREATE | ALTER TABLE table_na@

(

field_namel data_type(size) co%int_name,
field_name2 data_type(size) traint_name,
field_name3 data_type(si2€) Geastraint_name,

= ,

THE CORE SQL @E DROP STATEMENT:

1. To delet base:
DROP D SE database_name

2%@ a table within a database
R

D ABLE table_name

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™

ACTIONS-
DATA DEFINITION LANGUAGE

THE CORE SQL OF THE DROP STATEMENT- (CONT'D.):

3. To truncate a table within a database:
TRUNCATE TABLE table_name %
4. To delete an index within a database @

DROP INDEX index_name

THE CORE SQL OF THE ALTER TABLE STATEMENT: Q
1. To alter a table to add a field: é
ALTER TABLE table_name

ADD field_name data_type Q
2. To alter a table to delete a field: Q

ALTER TABLE table_name 14

DROP COLUMN field_name \\

3. To alter a table to modify a field’s data type: (b

ALTER TABLE table_name 0
MODIFY | ALTER COLUMN field_name d?D e

4. To alter a table to add an SQL conﬁ

ALTER TABLE table_name @
ADD (CONSTRAINT) sqgl_constraint

5. To alter a table to delete constraint:
ALTER TABLE table_nar:&
DROP (CONSTRAINT) §|I_constraint

%
@Q
>
7,

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™

ACTIONS- <
DATA DEFINITION LANGUAGE .

COMMONLY USED SQL CONSTRAINTS:

1.

2.

NOT NULL is a constraint that you can specify to ensure that the field will not accept N@alues as a
valid data entry.

UNIQUE is a constraint that you can specify that ensures that all values entered int%{ield are unique
values. There can be no repeating values within a field defined with a UNIQUE c i

PRIMARY KEY is the constraint that is specified to define a field (or combinatio
as being the primary key of the table. Remember that primary key fields mus
cannot contain NULL values. Therefore, you can think of the PRIMARY
combination of the UNIQUE AND NOT NULL constraints.

FOREIGN KEY is the constraint that you can specify to ensure that all
to values found within another table’s PRIMARY KEY field. This is
to ensure that records within a field have a corresponding, or “matc
CHECK is a constraint that is used to specify the allowable valuestgat’can be entered into a table. For
example, if you had an “CustomerID” field defined within a CREALE TABLE statement, you could add
CHECK (CustomerID > 0) to the CREATE TABLE statemen @ ecify that any values entered into the
“CustomerID” field must be values greater than zero.

DEFAULT is a constraint that places a default value i@ field specified when a record is entered.

Ids) within a table
unique values and
constraint as being a

ithin the field correspond
a referential integrity check
e within a related table.

For example, if you wanted to have ‘East Lansing’ ap as the default value for a “City” field within a
table when creating the table in the CREATE.T tatement, you could add DEFAULT ‘East
Lansing’ as the “constraint_name” parameter to ! ield when it is created

THE CORE SQL OF A SIMPLE SELECT STAT

O FIND NULL OR NOT NULL VALUES:

1.

To find null values within the “field_nam& pare” field.

SELECT field_name, field_namel, field @ etc. FROM table_name
WHERE field_name_to_compare IS NLA

2.

To find any values where there i@T a NULL value within the “field_name_to_compare” field.

SELECT field_name, field_nam%ield_namez, etc. FROM table_name

WHERE field_name_to_l NOT NULL

/

&
&

%‘b

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 33

ACTIONS- <
DATA DEFINITION LANGUAGE .

GENERAL SQL DATA TYPES: Q

Data Description
Fixed-length text, or character, string. N specifies the nurr@f fixed
CHARACTER(N) characters in length that the field will contain.
VARCHAR(N) or Variable-length text, or character, string. N specifie %XIMUM number
CHARACTER of characters that the field can contain
VARYING(N) '
BINARY(N) Fixed-length binary string. N specifies the fix .
BOOLEAN Stores a TRUE or FALSE value.

VARBINARY(N) or

BINARY VARYING(N) Variable-length binary string. N specifiég,the"MAXIMUM length.

INTEGER(P) Integer number values, with a precis fP.

SMALLINT Integer number values with a @on of 5.
INTEGER Integer number values vxi@ sion of 10.

BIGINT Integer number valuesx recision of 19.

Stores an exact numperwith a precision of P and a scale of S. For example,

DECIMAL(P,S) or a DECIMAL(9,2) we

NUMERIC (P,S)

ore a number that has 7 digits before the decimal
he decimal point, with a total of 9 digits stored.

her data types for use with floating point numeric data.
Floating poij @ is approximate; therefore, not all values in the data type
FLOAT(P) range ca presented exactly. P is the number of bits used to store the
mantis float number in scientific notation and, therefore, dictates the
precis@wd storage size.

REAL waimate-number data with a mantissa precision of 7.
FLOAT or DOUBLE A : , : .
PRECISION oxmate-number data with a mantissa precision of 16.
DATE tores year, month, and day values.

TIME Stores hour, minute, and second intervals.

TIMESTAMP Stores year, month, day, hour, minute, and second intervals.

Contains a number of integer fields, representing a period of time,
depending on the type of interval.

A fixed-length, ordered set of elements.

A variable-length, unordered set of elements.

Stores XML data.

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 34

ACTIONS-

DATA DEFINITION LANGUAGE ,é’_

GENERAL SQL DATA TYPES- (CONT'D.): Q
Description
MONEY, Stores a data type that represents monetary values. SMA NEY store a
SMALLMONEY or smaller ranges of values than MONEY. Not implement SQL or
CURRENCY Oracle RDBMS.
SQL* USED TO CREATE AN AUTOINCREMENT FIELD IN A TABLE: O

1. General MySQL Syntax: Q
CREATE TABLE table_name K
(

field_name Int NOT NULL AUTO_INCREMENT,
field_namel, data_typel, sql_constraintsl,

PRIMARY KEY field_name
) O

4

2. General SQL Server Syntax: \\

CREATE TABLE table_name

(

field_name int IDENTITY(X,y) PRIMARY K Y,Q
field_namel data_typel,

etc. @

); :

3. General Access 2013 Syntax: @

CREATE TABLE table_name
(field_name AUTOINCREMEb IMARY KEY, field_namel data_typel, etc.);

* Note that there is no &
RDBMS.

o
&Q
>
.

QL for this statement as the AUTOINCREMENT usage varies widely by

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 35

EXERCISES-

Tl

Purpose:

1. To be able to use DDL statements within SQL to create a simple database and table

DATA DEFINITION LANGUAGE ,é\’_
O

Exercises:

1. Double-click the “sqlite” file that you extracted in the Exercise at the en @pter 1 to open the
“SQLite” command shell application within either a Command Prompt ifidow within a Windows

operating system or within a Terminal window within the Mac operatin .
ective operating system.

2. Enter the commands within these Exercises into those windows in yo
3. Type the following command line into either the Command Pro dow or Terminal window to
create and open a new permanent database file called “test.db” Wit QLite.
4. .open test.db
5. Press the “Enter” key on your keyboard to create the new @e file named ‘test.db,” as well as
your cursor appear in front of the

words ‘sqlite>’ within the window. You will enter the follow

6. Type the following command into the window. Do n@
is

Il

mmands after that prompt.
with a semicolon as it is not an SQL
e databases used by SQLite. You will do

log into the newly created database file. You should nﬁ)
low

statement. It is an internal SQLite command that wi

this so that you can note where the ‘test.db’ file js y being stored within your computer. The

name of the file, and its location within your c iII be shown within the window.

.databases xa\

Press the “Enter” key on your keyboard to the preceding command.

Type the following SQL statement into t dow to create a “Customers” table. BE SURE TO

INCLUDE THE SEMICOLON AT THE OF THE STATEMENT! All SQL statements within

SQLite must end with a semicolon, ise you will simply display an extension of the command

line (shown by the ‘sqlite>’ prompt) swhefwou press the “Enter” key on your keyboard.

10. CREATE TABLE Customers (C6 ~@ erlD INTEGER PRIMARY KEY AUTOINCREMENT NOT
, A&

© o N

NULL, CompanyName TEXT ess TEXT, City TEXT, State CHAR(2), Zip CHAR(5), Phone

CHAR(10));

11. Type the following stateme% the window to create an “Employees” table. Press the “Enter” key
on your keyboard after typing entire statement.

12. CREATE TABLE Emp%es (EmployeelD INTEGER PRIMARY KEY AUTOINCREMENT NOT
NULL, FirstName T@L stName TEXT);

13. Type the followingyét ent into the window to create an “ltems” table. Press the “Enter” key on
your keyboard after typing the entire statement.

14. CREATE TABLE Items (ItemID INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
ItemName T, X

15. Type thesgll statement into the window to create a “Sales” table. Press the “Enter” key on your
keyboar typing the entire statement.

16. CREA BLE Sales (SalelD INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,

INTEGER REFERENCES Employees(EmployeelD) NOT NULL, CustomerID
REFERENCES Customers(CustomerID) NOT NULL, Saledate TEXT NOT NULL);
the following statement into the window to create a “SalesDetails” table. Press the “Enter” key
ur keyboard after typing the entire statement.
18 ATE TABLE SalesDetails (SalelD INTEGER REFERENCES Sales(SalelID) NOT NULL,
emID INTEGER REFERENCES Items(ltemID) NOT NULL, Price DECIMAL(10,2) NOT NULL,
Quantity INTEGER NOT NULL, PRIMARY KEY (SalelD, ltemID));

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 36

EXERCISES-

DATA DEFINITION LANGUAGE ,é\,_

Exercises- (cont’d.): Q

19. Now that you have created the basic tables within the database file, you will now x@ creating a
few indexes on those tables. Type the following statement into the window to creat e amfindex. Press
the “Enter” key on your keyboard after typing the entire statement.

20. CREATE INDEX CustomerID on Customers(CustomerlID);

21. Type the following statement into the window to create an index. Press @nter” key on your
keyboard after typing the entire statement.

22. CREATE INDEX ItemID on Items(ltemID); %

23. Type the following statement into the window to create an index. @ the “Enter” key on your
keyboard after typing the entire statement.

24. CREATE INDEX SalelD on Sales(SalelD); Q

25. Type the following statement into the window to create an i & ss the “Enter” key on your
keyboard after typing the entire statement. é

26. CREATE INDEX EmployeeSales on Sales(EmployeelD);

27. Type the following statement into the window to creat dex. Press the “Enter” key on your
keyboard after typing the entire statement.

28. CREATE INDEX CustomerSales on Sales(Custo

29. You can close the Terminal or Command Prompt
the ‘test.db’ file that you have created, as yogw
each chapter. The Exercises at the end
completed in sequential order.

ow at this point, if desired. Be sure to keep
it for the upcoming Exercises at the end of
apter build upon one another and must be

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 37

CHAPTER 3- <
DATA MANIPULATION LANGUAGE .

3.1- THE INSERT STATEMENT O

EMENT

ENT %Q

3.2- THE UPDATE STATE

3.3- THE DELETE STATEM

3.4- THE SELECT STATEM Q

3.5- THE WHERE CLAUSE 0
3.6- CRITERIA NOTATION AND WILDCARD WRA[GTJERS IN THE
WHERE CLAUSE Q

3.10- THE UNION O PL I

3.41- THE S ElECﬁ&T STATEMENT

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 38

DATA MANIPULATION LANGUAGE

3.1- The INSERT Statement: Q

After examining the core SQL statements used to create objects within rela database
management systems, you should next learn how to add, edit, delete and select data withif"these same
systems. SQL uses the Data Manipulation Language statements to accomplish t tasks. The first
statement to learn is the INSERT statement. This statement is used to insert new re into a table. Note
that this is NOT the command used to update information within existing tabl rds. That task is
accomplished by the UPDATE statement, which will also be discussed within thi
The core SQL of the INSERT statement used to create new records wi
The “table_name” is the name of the table within which the records are to
name of the field within which to place the data, and “value” is the value OQ

r.
table is shown below.
ated, “field_name” is the
to place into the field.

INSERT INTO table_name (field_name, field_namel, field_name2, etc.&
VALUES (value, valuel, value?2, etc.)

Note that it is possible to omit the “field_name” parameters) within some implementations of the
INSERT statement in some relational database management systéms. Also, you will not need to specify a
value within this statement for any fields that are assigned to-incrementing field value. You may also
skip entering the names of field_name parameters into whi% would like to enter NULL values, if those
fields can accept the entry of a NULL value and you have @ ual data to enter into those fields.

You can view the specific implementations SERT statement within MySQL 5.7, SQL Server
2012, and Access 2013 by clicking the following hyp

MySQL 5.7: \Q{D

SQL Server 2012: (b
Access 2013: @

4\

After you have data within the tables in your database, you will often need to update those records.
SQL uses the UPDATE gtatement to update field data within specified records in a table. The core SQL of
the UPDATE state is shown below. Note that the “table_name” parameter is the name of the table that
contains the rec update. The “field_name” parameter is the name of a field within the table. The
“update_value@ eter is the value to which you want to update the associated “field_name.” The

3.2- The UPDATE State

“existing_value meter is the existing value that you want to update.

UPDATE dabléy name
SET fi e=update_value, field_namel=update_valuel, etc.
_name=existing_value

w
ote that the WHERE clause within this statement is VERY important! Without this clause, which

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 39

http://dev.mysql.com/doc/refman/5.7/en/insert.html
http://technet.microsoft.com/en-us/library/ms174335.aspx
http://msdn.microsoft.com/en-us/library/office/ff834799.aspx

DATA MANIPULATION LANGUAGE

\’
3.2- The UPDATE Statement- (cont’d.): Qs s

specifies exactly which records within the table to update, you will update EVERY record the table!
Always be sure to double-check your WHERE clause before executing an UPDATE on table ré€ords.

The following hyperlinks will demonstrate how to implement the UPDATE stat t within SQL for
MySQL 5.7, SQL Server 2012, and Access 2013. @

MySQL 5.7: @
SQL Server 2012: O

Access 2013: &

R

3.3- The DELETE Statement:

The DELETE statement is used to remove s Qrecords from a table. Like the UPDATE
statement, it includes a WHERE clause that you sHoul ure is correct before executing the DELETE
statement. If you do not specify a WHERE clause Withimythe DELETE statement, you will delete ALL the

records within the table! The core SQL of th TE statement is shown below. Note that the
“table_name” parameter is the name of the tabl contains the records to delete. The “field_name”
parameter is the name of a field within the tab he “delete_value” parameter is the value within the
“field_name” specified, for which you want t any matching records.

WHERE field_name=delete_value

DELETE FROM table_name :@

Note that if you want to dele@L records from a table, you can use the DELETE FROM statement
without the WHERE clause. Exgcuting this statement will delete all records from the table specified, but
leave the structure and indexes&the table intact. As mentioned earlier, you should ALWAYS use care to
double-check your SQL state efore executing a DELETE or UPDATE statement.

The specific SQL aientations of the DELETE statement within MySQL 5.7, SQL Server 2012,
and Access 2013 are shown at the hyperlinks listed below.

My SQL 5.7: @’
SQL Server 20Q

Access :

.

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 40

http://dev.mysql.com/doc/refman/5.7/en/update.html
http://technet.microsoft.com/en-us/library/ms177523.aspx
http://msdn.microsoft.com/en-us/library/office/ff845036.aspx
http://dev.mysql.com/doc/refman/5.7/en/delete.html
http://technet.microsoft.com/en-us/library/ms189835.aspx
http://msdn.microsoft.com/en-us/library/office/ff195097.aspx

DATA MANIPULATION LANGUAGE

3.4- The SELECT Statement: Q

You use the SELECT statement in SQL to choose specific records to view from Ie, or from
related tables, within a temporary table called a result set. This tutorial will start the examifiation of the
SELECT statement by looking at the SELECT statement in its simplest form when it i to select all of
the records from a single table. The core SQL of the statement is shown below. Not e “table_name”
parameter is the name of the table from which you want to select all the recor the “field_name”
parameter is the name of a field within the table. Keywords within braces { } are

SELECT { DISTINCT } field_name, field_namel, field_name2, etc.

FROM table_name O
or &Q

SELECT * FROM table_name

In the first example shown above, the names of the fields 8f{data you want to see within the result
set are specified by name after writing the SELECT statem You can write a SELECT statement in this
manner to only show selected data fields from a table within result set.

The DISTINCT keyword, if used, will only displa ue record values within the field_names that
are specified. This is used when you do not want d ecords to be returned within the result set. By
default, all records will be returned within a result setmless the DISTINCT keyword is used.

In the second example, the asterisk chara sed to specify that ALL of the fields within the table

temporary copy of all the records and fields witQin table specified.

Note that while the statement shown basis of the SELECT statement, the following lessons
within this chapter will show how the statement is augmented with additional clauses and
keywords to enhance its abilities. The CT statement is one of the most powerful and potentially
complex statements within the SQL la e. Itis arguably the most important statement within SQL.

The following hyperlinks dis@he full potential uses of the SELECT statement within MySQL 5.7,
SQL Server 2012, and Access 201 te that the SELECT statement, as shown within these web pages,
is actually quite complex. This tutorial will continue to explain these various clauses and keywords within
the SELECT statementin the ing lessons.

MySQL 5.7: s\

/

SQL Server 201 2\@
Access 2013; Q

%‘b

should appear within the result set. The secon;s ment will produce a result set that is, essentially, a

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 41

http://dev.mysql.com/doc/refman/5.7/en/select.html
http://technet.microsoft.com/en-us/library/ms189499.aspx
http://msdn.microsoft.com/en-us/library/office/ff821148.aspx

DATA MANIPULATION LANGUAGE

3.5- The WHERE Clause: Q

When used within the SELECT statement, the WHERE clause will determine wh@cords you
want to select from a specified table or tables. It does this by selecting records from a t where the
values within a field you specify match a criteria you specify. Many times, the criteri e matching, or
“‘equal to,” a field value. Note, however, that this will not necessarily be the case in ations. You can
also specify a criteria which looks for values within a field that are greater than €8s than a specified
value. You can also look for NULL values within a field. There are many ways pare field values to
specified criteria. No matter which criteria you specify, the criteria will alway ar within the WHERE
clause when used in the SELECT statement. You can examine the core SQL @ e SELECT statement with
the WHERE clause below. Note that the “ftable_name” parameter is the gragtesof a table from which you
want to select the records, the “field_name” parameter is the name of a nd the “criteria” parameter is
the value you want to find within the specified field. The braces are usé 3note an area where a choice
must be made, and the pipe symbol is used to separate the choices availgable in that area.

SELECT {* | field_name, field_namel, etc.}
FROM table_name

WHERE field_name = criteria

ows a WHERE clause that is used to find

g is a very common use of the WHERE clause,
it can also be used to find values that are not equal ecified value in some respect, as well. You can
use the following comparison operators within the €rifegia to specify the comparison operation to perform on
the criteria value specified within the WHERE claus SQL.

As mentioned earlier in this lesson, this exam
records where a field is equal to a value specified.

Operator Description

= Equals. Used to find valu ield that are equal to a value you specify.

Not equal to. Used to seléct values in a field that are NOT equal to a value you specify.

<>or!l= The symbol used ¢ ange depending on the version of SQL implemented within your
RDBMS.

> Greater than. USed to find values in a field greater than a value specified.

< Less tha edfto find values in a field less than a value specified.

- Greater t r equal to. Used to find values in a field greater than or equal to a value
specified

<= n or equal to. Used to find values in a field less than or equal to a value specified.

BETWEEN find values in a field including and between two values that are specified.

LIKE d to find values in a field that match a pattern that is specified.

sed to find values that match multiple values within a list of values that are specified.

Used to join multiple selection criteria together. Selects records that match both criteria
AND o
joined by the AND operator.

@ Used to join multiple selection criteria together. Selects records that match either criteria
joined together by the OR operator.

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 42

DATA MANIPULATION LANGUAGE

\’
3.5- The WHERE Clause- (cont’d.): Qs s

The following hyperlinks display many uses of the WHERE clause within the SELE tement for
SQL Server 2012 and Access 2007, which still applies to Access 2013. While there is no cific official
online documentation for the WHERE clause within MySQL 5.7, a listing of expressio tax that can be

included within a WHERE statement for MySQL 5.7 is referenced in the hyperlink bel

MySQL 5.7 (Expression Syntax): %

SQL Server 2012: Q

Access 2007 (Also Applies to 2013): 0

3.6- Criteria Notation & Wildcard Characters in WHERE @e: 2
D)

You should also ensure that the criteria value yo ify matches the data type of the field within
which you are searching for that value when you ente ria value to find within a field in the WHERE
clause. For example, when searching for a matchinggextyvalue within a field that contains a text data type,
you will often enclose the criteria value to find withj xe or double quotation marks, depending on which
set of quotation marks is preferred by the SQL your RDBMS. Many implementations will accept
either set. For example, if searching for the val ast Lansing” or “East Grand Rapids” within a “City”
field in the WHERE clause, the resulting W\ use may look like the following example.

WHERE City = ‘East Lansing’ OR City = ‘@rand Rapids’

or

WHERE City = “East Lansing” mgc@“East Grand Rapids”

The quotation marks indicate to the RDBMS that it should be searching for a text value within
the specified field. This %@nat you must know the data type of the field specified by the WHERE
clause. Note that these critefia, values are often called “literal values” or “constants.”

The following tab
wildcard characters

You must always, c
criteria notation,

lists some of the most commonly used data type notation for literal values and
specifying criteria values within the WHERE clause in RDBMS implementations.
he specific documentation for your RDBMS to be sure you are using the correct
TIME, DATETIME, and TIMESTAMP values, in particular, can have more varied
criteria notati ithin relational database management systems. Note that in most RDBMS
implementati meric criteria values do not have any specified notation.

Wi haracters, which are often used with the LIKE operator, represent unknown values within
a text fi You can use wildcard characters in the WHERE clause to denote “unknown” values within a

"YEN

patter ant to find within a field. For example, if you wanted to find the name of any city that started
Wi rd “East” within a “City” field, you could use the following wildcard characters within the criteria of
t%RE clause shown in the following possible examples. Note that the specific wildcard character to
_use his purpose will vary, depending on which RDBMS you are using.

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 43

http://dev.mysql.com/doc/refman/5.7/en/expressions.html
http://technet.microsoft.com/en-us/library/ms188047.aspx
http://office.microsoft.com/en-us/access-help/access-sql-where-clause-HA010278156.aspx

DATA MANIPULATION LANGUAGE

WHERE City LIKE ‘East %’

\’
3.6- Criteria Notation & Wildcard Characters in WHERE Clause- (cont’d.): QE

¥ 9

WHERE City LIKE “East *” @

Notation

“or*” Specifies a text value or text string. Sometimes used to deno Q non-numeric value.
None Numeric values do not use any notation. Numbers are s' by a lack of notation.
Specifies a date/time value in Microsoft Access. :
Specifies a parameter or other field name value t the criteria in Microsoft Access.
[1 Example: [table.field]. Used to denote a set of ini aracters to match when used in
conjunction with wildcard characters in most other MS. Example: ‘[a-d]%’
% or * Wildcard character. Used to denote multiple own characters.
_or? Wildcard character. Used to denote g,si @ nknown character.

The following web pages provide addition urces that show how to denote literal values or
constants within MySQL 5.7, SQL Server 2012, a ess 2013. Note that the resource page for Access

2013 shows many different examples of query%eti used within the “Design View” of that application.
Note that you can use these same criteri e’ designing queries within the “SQL View” within that
application. It also displays the notation of INa ues within the application.

MySQL 5.7: :
SQL Server 2012: @

Access 2013: @

7

3.7- The ORDEI@USE

When viewingr the result set of a SELECT statement in SQL, the records will be displayed in the
order that the selected from the table. This means that, by default, they will not be displayed in any
particular orde in the result set. You use the ORDER BY clause within the SELECT statement to sort
cted within the result set. The core SQL of the SELECT statement with the ORDER BY
n below. Note that the “table_name” parameter is the name of the table from which you want

clause j

to Ie@records, the “field_name” parameter is the name of a field, and “criteria” is a value to find within

t% ed field. ASC stands for “ascending” and DESC stands for “descending. The braces are used to
t

d an area where a choice must be made, and the pipe symbol is used to separate the

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 44

http://dev.mysql.com/doc/refman/5.7/en/literals.html
http://technet.microsoft.com/en-us/library/ms179899.aspx
http://office.microsoft.com/en-us/access-help/examples-of-query-criteria-HA102815718.aspx?CTT=1

DATA MANIPULATION LANGUAGE

choices available in that area.

\’
3.7- The ORDER BY Clause- (cont’d.): Qs ,

FROM table_name
WHERE field_name = criteria @
ORDER BY field_name {ASC | DESC}, field_namel {ASC | DESC}, etc.

SELECT {* | field_name, field_name1, etc.} %

Note that you often will not need to specify “ASC” for each field by w @ ou want to sort the result
set, as the field will be sorted in ascending order (1-9, A-Z) by default. Ha #to sort the records by the
values within the field in descending order (9-1, Z-A), you must specif DESC keyword after each
named field that you want to sort in descending order.

The following hyperlinks display the use and optimization_ofthe ORDER BY clause within the
SELECT statement for MySQL 5.7, SQL Server 2012 and Access hich also applies to Access 2013.

SQL Server 2012: §
&
L

MySQL 5.7:

Access 2007 (Also Applies to 2013):

3.8- The GROUP BY Clause and Agqgre ctions:

You will often want to perforr%e type of function on the records selected within a SELECT
statement. For example, you may w, count the number of records selected. Likewise, you may want to
count sets of records within a result@or example, you may want to count the number of records within a
table by state, or by country. Y®u use aggregate functions to perform these tasks in SQL. A function is
simply a type of mathematica computational operation, such as COUNT, SUM, or AVERAGE, for
example. The term aggrega @ eans a whole or total composed of separate parts. The term aggregate
function is used to descri way that the function will perform its computation over a range, or group, of
records. The grouping of recofds upon which the function is performed could be all of the records selected,
or they could be groupinﬁ created by the unique values found within one or more fields.

While you metimes want to perform an aggregate function, such as COUNT, on all of the
records within a statement to find the total count of the records; in real-life application of SQL, you
will most often aggregate functions in conjunction with the GROUP BY clause. In this lesson you
will examine L@he GROUP BY clause in the SELECT statement to group records by values within a
field and peffo gregate functions on those grouped values. For example, grouping the distinct values
found wit yotate” field and then finding the SUM of a “Sales” field for each grouping created within the

“State” fi find the total amount of sales by state.
ore SQL of the SELECT statement with the GROUP BY clause is shown next. Note that the
e” parameter is the table name from which you want to select the records, the “field_name”

meter is the name of a field, “aggregate function” is an aggregate function you want to perform upon

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 45

http://dev.mysql.com/doc/refman/5.7/en/order-by-optimization.html
http://technet.microsoft.com/en-us/library/ms188385.aspx
http://office.microsoft.com/en-us/access-help/order-by-clause-HA001231493.aspx

DATA MANIPULATION LANGUAGE ~

3.8- The GROUP BY Clause and Aggregate Functions- (cont’d.): Q

the specified field, and criteria is a criteria expression used for selection. Elements shown rackets []
are optional. Elements shown within braces { } are simply optional extensions of the SEL clause that
can be incorporated, if needed, into a single statement. These are only shown so that will be aware of
the order in which the clauses should be placed within a single SELECT statement. @

SELECT field_name, aggregate_function(field_namel), [etc.]

FROM table _name @
{ WHERE clause } O
GROUP BY field_name, [etc.]

[HAVING criteria]
{ ORDER BY field_name [DESC]} K

In many relational database systems, the fields named withiggthe GROUP BY clause must also
appear within the SELECT clause, meaning that you may only @ P BY a field that has been selected
within the table. Also note that some RDBMS implementations mag also allow for the use of field labels,
field numbers (order of field from left to right), and more com expressions within the GROUP BY clause.

Note that when using the GROUP BY clause, you@also choose to use the optional HAVING

clause within the SELECT statement. The HAVING_ cl is simply a selection criteria that determines
which groups to display. It functions like a WHERE ¢ r the GROUP BY clause, however the criteria

used in the HAVING clause can include aggreg ctions that the WHERE clause will not allow.
Consider the following example that shows the sum ales” field for groupings within a “State” field.

SELECT State, SUM(Sales) 0
FROM Table \
GROUP BY State (b
HAVING SUM(Sales) > 100000 :

In the previous example, thmlNG clause would restrict the display of any groups where the total
of the “Sales” field for the “State” gr as less than 100,000. Note that this is not a selection that could be
accomplished within the WHERE clause. When creating a SELECT statement that includes both a WHERE
clause and a HAVING clause R&mber that the WHERE clause is used to select which records are used
to create the aggregated while the HAVING clause is used to select which groups to display after
the selected records have% aggregated.

The following hyperlinKs display the use of the GROUP BY clause within the SELECT statement for
SQL Server 2012 and Mess 2010 and 2007, which also applies to Access 2013. Additional functions and

modifiers that can t@ed with the GROUP BY clause within MySQL 5.7 are also listed at the following
hyperlink as an addi | learning resource.

MySQL 5.7 @ns and Modifiers for Use with GROUP BY Clauses):

SQL S?ﬁ 12:

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 46

http://dev.mysql.com/doc/refman/5.7/en/group-by-functions-and-modifiers.html
http://technet.microsoft.com/en-us/library/ms177673.aspx

DATA MANIPULATION LANGUAGE

Access 2010 (Also Applies to 2013):

\’
3.8- The GROUP BY Clause and Aggregate Functions- (cont’d.): QE

The following web page hyperlinks list aggregate functions, used with the G Y and HAVING
clauses, that are accepted within MySQL 5.7, SQL Server 2012, and Access 2013.

MySQL 5.7: @

SQL Server 2012: &
Access 2013: Q

3.9- The JOIN Clause: Q

The next aspect of the SELECT statement to;disQ;;is the JOIN clause. Joins between two tables
occur when the values within a PRIMARY KEY fiel table are linked to values within the FOREIGN
KEY field of another table. Creating joins within th T statement allows the user to access data from
multiple tables within a single result set, and is on primary functions of a relational database.

There are many variations on the type n that can occur between the PRIMARY KEY and
FOREIGN KEY fields between two tables4 Each type of join is referenced by a slightly different
name. The different types of SQL joins a XINNER JOIN, the LEFT JOIN, the RIGHT JOIN, and the
FULL JOIN. Within different RDBMS th e joins may also be referred to as JOIN, LEFT OUTER
JOIN, RIGHT OUTER JOIN, and FULLB R JOIN. You should check your RDBMS documentation to
see which version of the name is pre Often both are acceptable.

The core SQL of the SE statement with a JOIN clause is shown below. Note that the
“table_name” parameter is the pameé=of a table to join and from which you want to select records, the
“field_name” parameter is the n% of a field within a joined table, the “primary_key” parameter is the name
of the primary key field in th and the “foreign_key” parameter is the name of the foreign key field in
the table. Choices are sh r@n braces {} with the pipe symbol | separating the available choices.

SELECT field_name, field, namel, field_name2, etc.
FROM table_name

{ INNER JOIN | IN | RIGHT JOIN | FULL JOIN } table_namel
ON table_name, _key = table_namel.foreign_key

Note Qhe ON clause, which explicitly names the two fields that are to be joined together, you
see the d tation of table_name.field_name being used. This dot notation is commonly used to refer to a
specific fi hin a specific table. It is often used to refer to a field in any part of a SELECT statement
where IS a possible ambiguous or duplicate field name. Most often, it is used within the ON statement

he first join type you will examine is named the INNER JOIN, or often simply JOIN, as it is the most

w% two fields, which often share the same field name, in two different tables.
o] nly used type of join between tables. An inner join will display records that have a matching

C

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 47

http://office.microsoft.com/en-001/access-help/group-by-clause-HA001231482.aspx
http://dev.mysql.com/doc/refman/5.7/en/group-by-functions.html
http://technet.microsoft.com/en-us/library/ms173454.aspx
http://msdn.microsoft.com/en-us/library/office/ff197054.aspx

DATA MANIPULATION LANGUAGE ~

3.9- The JOIN Clause- (cont’d.): Q

value in the PRIMARY KEY and FOREIGN KEY columns between two tables. Records thnot have a
matching value within both of these two columns will not be displayed within the result set. F&f example, if
you have a “Customers” table with a primary key column that is joined to a “Sales”% with a related
foreign key column, then choosing an INNER JOIN between the two tables will sh customers who

have associated sales records. Customers without associated sales records will not own.
The next type of join to examine is the LEFT JOIN, which is also someti ed a LEFT OUTER
JOIN. A LEFT JOIN between two tables will display all records from the left table table_name table), as

well as any associated records from the RIGHT table (the table_namel tab
the joined fields are equal. Using the “Customers” and “Sales” example
between the two tables would show ALL “Customer” records as well as¥e
customers.

The next type of join to examine is the RIGHT JOIN, wh% so sometimes called a RIGHT
OUTER JOIN. A RIGHT JOIN between two tables will displ ecords from the right table (the
table_namel table), as well as any associated records from th table (the table_name table) where
the values between the joined fields are equal. Using the “Customgrs” and “Sales” example from before,
using a RIGHT JOIN between the two tables would show “‘Sales” records as well as any associated
“Customers” for those sales. Q

The last type of join to examine is the FULL {OI ich is sometimes also called a FULL OUTER
JOIN. A FULL JOIN between two tables will displ records from BOTH tables, as well as their

@ here the values between
efore, using a LEFT JOIN
associated “Sales” for those

associations where the values between the joined are equal. Using the “Customers” and “Sales”
example from before, using a FULL JOIN betwe wo tables would show ALL “Customer” records as
well as ALL “Sales” records. It will also display § ustomer” records” are associated with which “Sales”
records.

Note that the JOIN clause is placed a FROM clause and before the WHERE clause within the
larger syntax of the SELECT statement in here are also variations of the syntax of the JOIN clauses
in many RDBMS. For example, i L Server 2012, you can simply use the WHERE
table_name.primary_key = table_nam&reign_key clause within the WHERE statement to create an
implicit join between them, althougm is not the recommended method. Likewise, MySQL 5.7 supports
the keyword NATURAL JOIN, whichQuill create a join between two tables with a shared field name. You
should always check the docunientation for your RDBMS to see what is allowed when joining tables and
what terms are used. Below perlinks to web pages that provide information on creating joins within
the SELECT statement i 5.7, SQL Server, and Access 2013.

MySQL 5.7:
/4

SQL Server: \@

Access 2013:
(INNER J@lI
(LEFT@ T JOIN):

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 48

http://dev.mysql.com/doc/refman/5.7/en/join.html
http://technet.microsoft.com/en-us/library/ms191517.aspx
http://msdn.microsoft.com/en-us/library/office/ff197346(v=office.15).aspx
http://msdn.microsoft.com/en-us/library/office/ff198084(v=office.15).aspx

DATA MANIPULATION LANGUAGE

3.10- The UNION Operator: Q

The UNION operator allows you to combine the result sets of two or more indI SELECT
statements into a single result set. Note that the UNION operator is not a JOIN, but rather a w&y to combine
the data within two result sets into the same fields in single result set. Because of this%lr\llION operation
can only combine two SELECT statements with the same number of fields. These fi ust also share
compatible data types within the two separate SELECT statements. If combining t@LECT statements
that contain multiple fields, the fields must also be in the same order from left to rj

By default, the UNION clause will only return unique values in the field it is combining. If you
want the UNION clause to return ALL records from both SELECT state @ then you must use the
UNION ALL clause, instead. Also note that if combining fields with diffepeqt™i€ld name values, the field
name values of the first SELECT statement will be the ones that are used

The core SQL of the UNION clause is shown below. The “selec

select_statement
UNION
select_statementl Q

in combined result set.
taterpent” parameter is simply the

or

select_statement \\'
UNION ALL
select_statementl Q
The following web page hyperlinks N yntax of the UNION operator when used within MySQL
5.7, SQL Server 2012, and Access 2013.

MySQL 5.7: A

SQL Server 2012: \
Access 2013: @

o
@Q
>
.

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 49

http://dev.mysql.com/doc/refman/5.7/en/union.html
http://technet.microsoft.com/en-us/library/ms180026.aspx
http://msdn.microsoft.com/en-us/library/office/ff821131.aspx

DATA MANIPULATION LANGUAGE

3.11- The SELECT INTO Statement: Q

The SELECT INTO statement in SQL is used to copy the result set of a SELECT ent into a
new table that is created by the SELECT INTO statement. The core SQL of the SELECT INTO"Statement is
shown below. Note that the “table_name” parameter is the name of the table from whi%u want to select
the records, the “new_table_name” parameter is the name of the new table to cre into which you
want to copy the selected records, the “field_name” parameter is the name of a field “criteria” is a value
to find within the specified field. Braces { } are used to denote an area where a must be made, and
the pipe symbol | is used to separate the choices that are available in that area

SELECT {* | field_name, field_namel, etc.} O

INTO new_table_name
FROM table_name &

WHERE field_name = criteria

Note that there are some variations within the imple tions of this statement within each
RDBMS. You should check the documentation for your RDBMS to"S€e what options are available for you to
use. For example, you can use the SELECT INTO statemen ySQL 5.7 to copy the result set to either a
new table or into a variable. However, you cannot copy the fesult set to a variable within SQL Server 2012.
Also note that this type of a query is known as a “Ma&e @ query type within Access 2013. You can use
the hyperlinks below to view the implementation of thi ement within MySQL 5.7, SQL Server 2012, and
Microsoft Access.

MySQL 5.7: 0@
SQL Server 2012: %

Access 2013: @

:{\

Statement:

3.12- The INSERT INTO SE

You can use the INSERT INTO SELECT statement to copy records from one table with a SELECT
statement, and then a wnd them into another existing table. When you copy the records from one table
into another by usin@llNSERT INTO SELECT statement, the existing records within those tables will not
be affected. Thex L statement used to copy records between existing tables is shown below. Note
that the “table parameter is a name of a table within the database, the “field_name” parameter is a
name of a fiel a table, and “criteria” is a value that you want to find within the specified field.

INSERT INT ble_name (field_name, field_namel, field_name?2, etc.)
SELE " MNield_name3, field_name4, etc.}
F " namel

eld_name3 = criteria

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 50

http://dev.mysql.com/doc/refman/5.7/en/select-into.html
http://technet.microsoft.com/en-us/library/ms188029.aspx
http://msdn.microsoft.com/en-us/library/office/ff192059.aspx

DATA MANIPULATION LANGUAGE

\’
3.12- The INSERT INTO SELECT Statement: QE

There is some variation by RDBMS when using this statement, and you sho @ heck your
documentation to see all of the options available. Note that in Access 2013, this type of query™s referred to
as an “Append Query.” There are hyperlinks below that show the use of this statemen ySQL 5.7, SQL
Server 2012, and Access 2013. @

MySQL 5.7: @

SQL Server 2012 (Specific example on the page of the more general INSQQement);

Access 2013: &

3.13- Subqueries: 2

You can nest a query within another query to crea uery. A subquery is simply a query that is
placed within another query. Subqueries can be nesied de of many types of DML statements, such as
the standard SELECT statement, a SELECT INT ent, an INSERT INTO statement, an UPDATE
statement, and the DELETE statement. You can also“aest subqueries within other subqueries. However,

there is often a limitation on the number of nested eries allowed by your RDBMS.
Also, you should exercise caution when Usj ubqueries to ensure that their use does not degrade
the performance of the query within which embedded. A poorly-designed subquery can negatively

limits are placed on the use of subqueries a SELECT statement. Most systems will allow the use of a
subquery in any part of a DML statemen € you can use an expression. So, for example, you can use a
subquery to create a type of calcu Id by placing it into the SELECT field list within the primary
SELECT statement. Alternately, th found within the WHERE clause, determining which records are

impact the performance of a query. You \% d to check with your RDBMS documentation to see what

selected within the primary quer

Subqueries are placed \% parentheses inside of the main SELECT statement. The core SQL of a
subquery is shown below. rimary_query” parameter simply notes where the primary SELECT
statement is located. Not @ “table_name” parameter is the name of the table from which you want to
select the records, the “fieldsaame” parameter is the name of a field, and “criteria” is a criteria expression
used for selection. Elemgnts shown within brackets indicate that a choice must be made, and the choices
shown are separate the pipe symbol. Elements shown within braces { } are simply optional extensions
of the SELECT«l hat can be incorporated, if needed. Note that a subquery does allow for most
clauses that canx orporated within a primary SELECT statement.

primary_qu

{ lause }
{ BY field_name, etc. }
{H G criteria }

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 51

http://dev.mysql.com/doc/refman/5.7/en/insert-select.html
http://technet.microsoft.com/en-us/library/ms174335.aspx#OtherTables
http://msdn.microsoft.com/en-us/library/office/ff834799(v=office.15).aspx

DATA MANIPULATION LANGUAGE

{ ORDER BY field_name [DESC]}
)

primary_query %

Below are links to documentation that shows the abilities and limitations of subqueries within
MySQL 5.7, SQL Server 2012, and Access 2013. You can also find related li in these pages that
also provide examples and related subquery information for each RDBMS.

MySQL 5.7: Q
SQL Server 2012: 0\

Access 2013: Q

\’
3.13- Subqueries- (cont’d.): Qs ’

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 52

http://dev.mysql.com/doc/refman/5.7/en/subqueries.html
http://technet.microsoft.com/en-us/library/ms189575.aspx
http://msdn.microsoft.com/en-us/library/office/ff192664.aspx

ACTIONS-
DATA MANIPULATION LANGUAGE

INSERT INTO table_name (field_name, field_namel, field_name2, etc.)
VALUES (value, valuel, value2, etc.)

THE CORE SQL OF THE INSERT STATEMENT: Q

4

UPDATE table_name
SET field_name=update_value, field_namel=update valuel, etc.
WHERE field_name=existing_value O

THE CORE SQL OF THE UPDATE STATEMENT: @t

THE CORE SQL OF THE DELETE STATEMENT: KQ
DELETE FROM table_name Q

WHERE field_name=delete_value Q

THE CORE SQL OF THE SELECT STATEMENT:

1. To select specified fields from a table: .\O

SELECT field_name, field_namel, field_name2, etc
FROM table_name \

2. To select specified fields from a table and on rn unique record values:
SELECT DISTINCT field_name, field_namt\d ame2, etc.

FROM table_name @
3. To select all fields from a table: :

SELECT * FROM table_name E

THE CORE SQL OF THE SELI{STATEMENT CONTAINING A WHERE CLAUSE:

SELECT field_name, fiel n, etc.
FROM table_name
WHERE field_name = criteria

o
@Q
>
.

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™

53

ACTIONS-
DATA MANIPULATION LANGUAGE .

COMMON COMPARISON OPERATORS USED WITHIN THE WHERE CLAUSE:

Operator Description

= Equals. Used to find values that are equal to a value that you specify. -

Not equal to. Used to select values that are NOT equal to a value yo y. The

<>orl= symbol used can change depending on the version of SQL implem within your
RDBMS. q

> Greater than. Used to find values that are greater than a valu ifled.

< Less than. Used to find values that are less than a value s

- Greater than or equal to. Used to find values that are gr. an or equal to a value
specified.

<= Less than or equal to. Used to find values that are Qn or equal to a value specified.

BETWEEN Used to find values including and between two v that are specified.

LIKE Used to find values that match a pattern tha ecified.

IN Used to find values that match multiple v, ithin a list of values that are specified.

AND Used to join multiple selection criteri ’l& r. Selects records that match both criteria
joined by the AND operator.

OR Used to join multiple selection critéria i6gether. Selects records that match either criteria

joined together by the OR opera

COMMON NOTATIONS USED FOR LITERARVALUES AND WILDCARD CHARACTERS:

Notation

“fort” Specifies a text val ext string. Sometimes used to denote any non-numeric value.
None Numeric values@o not use any notation. Numbers are signified by a lack of notation.
#H# Specifies a ’ge value in Microsoft Access.

Specifies eter or other field name value to use as the criteria in Microsoft Access.
[1 Example: [tabte.field]. Used to denote a set of initial characters to match when used in
conjuncwn with wildcard characters in most other RDBMS. Example: ‘[a-d]%’

% or * ildeard character. Used to denote multiple unknown characters.

or? [rd character. Used to denote a single unknown character.

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 54

ACTIONS-

THE CORE SQL OF THE SELECT STATEMENT CONTAINING AN ORDER BY CLAUSE:

SELECT field_name, field_namel, etc.

FROM table_name

WHERE field_name = criteria

ORDER BY field_name {ASC | DESC}, field_namel {ASC | DESC}, etc. %

DATA MANIPULATION LANGUAGE E\é ’
@)

THE CORE SQL OF THE SELECT STATEMENT CONTAINING A GROUP BY % éE
SELECT field_name, aggregate_function(field_namel), [etc.]

FROM table_name :
{ WHERE clause }
GROUP BY field_name, [etc.] é

[HAVING criteria]

{ ORDER BY clause } %
THE CORE SQL OF THE SELECT STATEMENT CONTAII\@ JOIN CLAUSE:

SELECT field_name, field_namel, field_name2, etc. . O

FROM table_name \b
{ INNER JOIN | LEFT JOIN | RIGHT JOIN | FULL J le_namel

ON table_name.primary_key = table_namel.forei

THE CORE SQL OF THE UNION OPERA

1. To create a UNION of two SELECT st@wts that returns only unique records values:

select_statement !
UNION
select_statementl @

2. To create a UNION of two SKECT statements that returns ALL records values within the statements:
select_statement

UNION ALL S\O

select_statementl ,
\Q)
Q
S
%

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 55

ACTIONS-
DATA MANIPULATION LANGU

A

GE

THE CORE SQL OF THE SELECT INTO STATEMENT:

SELECT {* | field_name, field_namel, etc.}
INTO new_table_name

FROM table_name

WHERE field_name = criteria

THE CORE SQL OF THE INSERT INTO SELECT STATEMENT: %

INSERT INTO table_name (field_name, field_namel, field_name2, etc.)
SELECT {* | field_name3, field_name4, etc.}
FROM table_namel

WHERE field_name3 = criteria

THE CORE SQL OF A SUBQUERY WITHIN A PRIMARY QUERQ
primary_query
(O

SELECT [* | field_name, field_namel, etc.] .
FROM table_name
{ WHERE clause }

{ GROUP BY field_name, etc. } \
{ HAVING criteria }

{ ORDER BY field_name [DESC]} 0

) NN

primary_query @

<
S

s\O

o
@Q
>
.

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™

56

DATA MANIPULATION LANGUAGE Eé

Purpose: Q

1. To be able to execute Data Manipulation Language (DML) statements in SQL on a d @ se

EXERCISES- \

Exercises: %
Ensure that you have completed the Exercise at the end of the previous c@@

1

2. Double-click the “sqlite” file that you extracted in the Exercise at the en hapter 1 to open the
“SQLite” command shell application within either a Command Pro ow within a Windows
operating system or within a Terminal window within the Mac operating\system.

3. Enter the commands within these Exercises into those windows in @ espective operating system.

4. Type the following command line into either the Command Promptawindow or Terminal window to
create and open a new permanent database file called “test.c&n QLite.

5. .open test.db

6. Press the “Enter” key on your keyboard to log into the dat €. You should now see your cursor
appear in front of the words ‘sqlite>" within the window. @II enter the following commands after
that prompt.

7. Now you will insert new data into the tables you « 2d in the Exercise at the end of the last
chapter. Type the following statements into the to insert data into the “Employees” table.
Press the “Enter” key on your keyboard after typi ach statement.

8. INSERT INTO Employees (FirstName, Las VALUES ('Joe', 'Smith");

9. INSERT INTO Employees (FirstName, L amke) VALUES (‘Fred', 'Smith");

10. INSERT INTO Employees (FirstName, L

11. INSERT INTO Employees (FirstName, L

12. INSERT INTO Employees (FirstNamg, tName) VALUES (‘Jack’, 'Wells");

13. Now you will insert new data into the®Ctistomers” table you created in the Exercise at the end of the
last chapter. Type the following sa ts into the window to insert data into the “Customers” table.

e) VALUES ('Mary', 'Jones');
ame) VALUES (‘Greg’, 'King');

Press the “Enter” key on your ard after typing each statement.
14. INSERT INTO Customers (yName, Address, City, State, Zip) VALUES ('Compco’, '100
Main St.', 'Lansing’, '‘MI', '4);

15. INSERT INTO Customers mpanyName, Address, City, State, Zip) VALUES (‘The Auto
Shop', '550 EIm St.', 'H&'MI', '48842");

16. INSERT INTO sm (CompanyName, Address, City, State, Zip) VALUES (‘Capital
Consulting’, '12% t', 'Lansing’, 'MI', '48912";

17. INSERT INTO Cus ers (CompanyName, Address, City, State, Zip) VALUES (‘'The Food

Store', '625 Lincoln St.', 'lonia’, 'MI', '48846");
18. INSERT INT, stomers (CompanyName, Address, City, State, Zip) VALUES (‘Flowers and

More', ' nd River', 'East Lansing', 'MI', '48823');

19. INSERT Customers (CompanyName, Address, City, State, Zip) VALUES (‘Kandy
Korne Hagadorn', 'East Lansing', 'MI', '48823');

20. INS O Customers (CompanyName, Address, City, State, Zip) VALUES (‘Rodgers
R ','250 Pine St.', 'Lansing’, 'MI', '48821");

21. ou will insert new data into the “ltems” table. Type the following statements into the window to

[the data. Press the “Enter” key on your keyboard after typing each statement.
2Z. RT INTO Items (ItemName) VALUES ('Pens’);
SERT INTO Items (ItemName) VALUES (‘Paperclips’);

_24. INSERT INTO Items (IltemName) VALUES (‘Markers');

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 57

EXERCISES-

Exercises- (cont’d.):

DATA MANIPULATION LANGUAGE E\F .
@)

25. INSERT INTO Items (ItemName) VALUES ('Paper");

26. INSERT INTO Items (ItemName) VALUES (‘Palm Pilots’);

27. INSERT INTO Items (ItemName) VALUES (‘Notebooks’); %

28. INSERT INTO Items (ItemName) VALUES (‘Manilla File Folders');

29. INSERT INTO Items (ItemName) VALUES ('Filing Cabinets'); @

30. INSERT INTO Items (ItemName) VALUES (‘Hanging File Folders');

31. INSERT INTO Items (ItemName) VALUES ('Staples’);

32. Now you will insert new data into the “Sales” table. Type the following s@ ments into the window to
insert the data. Press the “Enter” key on your keyboard after typing gagh*statement.

33. INSERT INTO Sales (EmployeelD, CustomerID, Saledate) VA .% 1, 2,'2007-01-01";

34. INSERT INTO Sales (EmployeelD, CustomerlID, Saledate) V ESN1, 2, '2007-01-02");

35. INSERT INTO Sales (EmployeelD, CustomerlD, Saledate) V S (1, 2,'2007-01-03");

36. INSERT INTO Sales (EmployeelD, CustomerlID, Saledat ES (2, 1, '2007-01-01";

37. INSERT INTO Sales (EmployeelD, CustomerlID, Saled LUES (2, 3, '2007-01-02");

38. INSERT INTO Sales (EmployeelD, CustomerID, Saledate)}®f/ALUES (2, 3, '2007-01-03");

39. INSERT INTO Sales (EmployeelD, CustomerID, S te) VALUES (3, 4, '2007-01-01");

40. INSERT INTO Sales (EmployeelD, CustomerlID, @e) VALUES (3, 2, '2007-01-15");

41. INSERT INTO Sales (EmployeelD, Custome:lD@ ate) VALUES (4, 4, '2007-01-10');

42. INSERT INTO Sales (EmployeelD, Custo I\ edate) VALUES (4, 2, '2007-01-10');

43. INSERT INTO Sales (EmployeelD, Custom LSaledate) VALUES (5, 6, '2007-01-21");

44. INSERT INTO Sales (EmployeelD, Customp, Saledate) VALUES (5, 6, '2007-01-22');

45, INSERT INTO Sales (EmployeelD, Cus D, Saledate) VALUES (4, 7, '2007-01-25");

46. INSERT INTO Sales (EmployeelD,&\@erlD, Saledate) VALUES (5, 5, '2007-01-25");

47. INSERT INTO Sales (EmployeelD, erlD, Saledate) VALUES (4, 5, '2007-01-15");

48. INSERT INTO Sales (Employeellm omerlD, Saledate) VALUES (1, 4, '2007-01-10");

49. INSERT INTO Sales (EmployeelD, €dstomerlID, Saledate) VALUES (1, 3, '2007-01-24");

50. INSERT INTO Sales (Employeﬁ&CustomerlD, Saledate) VALUES (2, 2, '2007-01-20");

51. Now you will insert new dar@: the “SalesDetails” table. Type the following statements into the
window to insert the data. P e “Enter” key on your keyboard after typing each statement.

52. INSERT INTO SalesDetéils (SalelD, ItemID, Price, Quantity) VALUES (1, 1, 1.50, 2);

53. INSERT INTO SalesDetaitg (SalelD, ItemID, Price, Quantity) VALUES (2, 2, 2.00, 5);

54, INSERT INTO S Is (SalelD, ItemID, Price, Quantity) VALUES (3, 3, 5.00, 10);

55. INSERT INTO Sal etails (SalelD, ItemID, Price, Quantity) VALUES (4, 4, 20.00, 1);

56. INSERT INTO SalesDeétails (SalelD, IltemID, Price, Quantity) VALUES (5, 5, 99.00, 1);

57. INSERT INTO SfesDetaiIs (SalelD, ItemID, Price, Quantity) VALUES (6, 6, 0.50, 10);

58. INSERT@IesDetaiIS (SalelD, ItemID, Price, Quantity) VALUES (6, 7, 1.00, 150);

59. INSERT lesDetails (SalelD, ItemID, Price, Quantity) VALUES (6, 8, 125.00, 1);
60. INSERT; SalesDetails (SalelD, ltemlID, Price, Quantity) VALUES (6, 9, 1.25, 20);
61. SalesDetails (SalelD, ltemlID, Price, Quantity) VALUES (7, 10, 2.00, 2);
62. SalesDetails (SalelD, ItemID, Price, Quantity) VALUES (8, 8, 125.00, 2);
63. | INTO SalesDetails (SalelD, ItemID, Price, Quantity) VALUES (9, 1, 1.50, 3);
64. T INTO SalesDetails (SalelD, ItemID, Price, Quantity) VALUES (9, 2, 2.00, 2);

65 RT INTO SalesDetails (SalelD, ItemID, Price, Quantity) VALUES (9, 4, 20.00, 6);
ERT INTO SalesDetails (SalelD, IltemID, Price, Quantity) VALUES (10, 1, 1.50, 10);

SERT INTO SalesDetails (SalelD, ItemID, Price, Quantity) VALUES (11, 8, 125.00, 2);

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 58

EXERCISES-

DATA MANIPULATION LANGUAGE N

]

76.

77.

78.

79.

80.

81.

82.
83.

84.
85.

86.
87.

Exercises- (cont’d.): Q

68.
69.
70.
71.
72.
73.
74.
75.

INSERT INTO SalesDetails (SalelD, ItemID, Price, Quantity) VALUES (12, 9, 12
INSERT INTO SalesDetails (SalelD, IltemID, Price, Quantity) VALUES (13, 10, 2.00,
INSERT INTO SalesDetails (SalelD, ltemID, Price, Quantity) VALUES (14, 4,%0

INSERT INTO SalesDetails (SalelD, ItemID, Price, Quantity) VALUES (15, 11)

INSERT INTO SalesDetails (SalelD, IltemID, Price, Quantity) VALUES (16 99.00, 3);

INSERT INTO SalesDetails (SalelD, IltemID, Price, Quantity) VALUES (4 .50, 4);

INSERT INTO SalesDetails (SalelD, IltemID, Price, Quantity) VALUE 8 5, 99.00, 2);

Now you will create a query that will display the total amount of e @ ale by “SalelD” for each
employee by “Employee ID.” To do this, enter the following SELE atément into the window and
then press the “Enter” key on your keyboard when finished to viey Bsults.

SELECT Sales.EmployeelD, Employees.FirstName, Employees.LastName,
SalesDetails.SalelD, Sales.Saledate, SUM([Prlce]*[Quantlt AS SaleAmount FROM Sales
INNER JOIN SalesDetails ON Sales.SalelD = SalesDetails*ealelD INNER JOIN Employees ON
Employees.EmployeelD = Sales.EmployeelD OuP BY Sales.EmployeelD,
Employees.FirstName, Employees.LastName, SalesDetaifS.SalelD, Sales.Saledate;

Now you will create a query that will display the amount sold for each product. Enter the
following SELECT statement into the window and i ress the “Enter” key on your keyboard when

finished to view the results.

SELECT Items.ltemName, SUM([Price]*[AS Amount FROM Sales INNER JOIN

SalesDetails ON Sales.SalelD = SalesDe leID INNER JOIN Items ON Items.ltemID =

SalesDetails.ltemID GROUP BY Items.It e;

Now you will create a query that displz;%71 al amount sold of each item to each customer ID for
ta

each date. Enter the following SEL ent into the window and then press the “Enter” key on
your keyboard when finished to view { ults.

SELECT Sales.CustomeriD, ?Q\ edate, Iltems.ltemName, SUM([Price]*[Quantity]) AS
Amount FROM Sales INNER J lesDetails ON Sales.SalelD = SalesDetails.SalelD INNER

JOIN Items ON Items.lIt = SalesDetails.ltemID GROUP BY Sales.CustomerlD,
Sales.Saledate, Iltems.ltem X
Now you will create a query will show all of the records within the “Customers” table. Enter the

following SELECT stategfient into the window and then press the “Enter” key on your keyboard when

SELECT * FROM(Cu§torpers;

Now you will upda Zip” field for the record with a “CompanyName” of “Rodgers Roofing” from

“48821” to “48912” by Using the UPDATE statement. Enter the following UPDATE statement into the

window and ther@ress the “Enter” key on your keyboard when finished to view the results.

UPDATE.C ers SET Zip='48912' WHERE CompanyName='Rodgers Roofing';

Now yo% play the “Rodgers Roofing” record within the “Customers” table by using the

SELEC ent so that you can verify the update. Enter the following SELECT statement into the

windog Qﬁen press the “Enter” key on your keyboard when finished to view the results.

SE OM Customers WHERE CompanyName = 'Rodgers Roofing';

Yal cam close the Terminal or Command Prompt window at this point, if desired. Be sure to keep
t.db’ file that you have created, as you will need it for the upcoming Exercises at the end of

ompleted in sequential order.

% chapter. The Exercises at the end of each chapter build upon one another and must be

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 59

CHAPTER 4-
DATA CONTROL LANGUAGE .

4.1- THE CREATE USER AND CREATE ROLE STATEM

4.2- PRIVILEGES %

4.3- THE GRANT STATEM

E

NT %

4.4- THE REVOKE STATEMENT O

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 60

DATA CONTROL LANGUAGE

4.1- The CREATE USER and CREATE ROLE Statements: Q

Data Control Language (DCL) is used within SQL to grant or deny privileges, which rmissions
to perform specific tasks within the database, to users. This lets the database administrator or owner
choose which users can perform which actions upon selected database objects. NOie that not every
RDBMS will fully implement DCL within their SQL. Some database systems, like SQLile od0 not implement
any DCL statements, as it is a single-user desktop database system. Other d Vo se programs, like
Microsoft Access 2013, use a separate security mechanism to determine user, /acce and privileges not
tied to SQL. You must check your RDBMS documentation to find out the level O D@L implementation that
exists within its SQL, if at all. DCL statements are used by the database ad @ rator, or owner, to create
users and roles within the database and to grant or revoke privileges to apenirom these users and roles. In
some more complex relational database management systems (RDBN ‘role” may be created in
ileges. Then individual users

relational database management systems also come with pre-de @ oles to which you can assign users.
The first statement to examine is the CREATE USER stat€ment, which is used to create a user

within the database. This statement is technically classified ata Definition Language (DDL) statement,

as it creates a database object. It is only added to this ch r because of its use in conjunction with the

DCL statements. The core SQL of the CREATE U@ statement is shown below. Note that the

3 ” H ..

user_name” parameter is the name of the user that3\'\ eated.

CREATE USER user_name

The CREATE ROLE statement is e@eate a role within the database. It is also classified as
Data Definition Language (DDL), as it clr& database object. It too, is only added to this chapter
because of its use in conjunction with the atements. The core SQL of the CREATE ROLE statement
is shown below. Note that the “role_nam:’ meter is the name of the role that is to be created.

CREATE ROLE role_name @

The creation of users a
the documentation available

roles within each RDBMS will vary, and you should ensure that you check
e, CREATE USER statement, as implemented in MySQL 5.7 and SQL
Server 2012 is shown i @ two hyperlinks below. Note the CREATE USER command in Microsoft
Access 2013 is only usedwwith the ANSI-92 compliant databases. Normally in Access 2013 databases,
security is handled by an entirely different process. You will also find the CREATE ROLE syntax statement
within SQL Server 20173hown at the bottom of the listing of hyperlinks below. Note that there is no
CREATE ROLE or @Ient statement within MySQL 5.7.

MySQL 5.7 (C@?USER):
saL Sen@ (CREATE USER):

c 13 (CREATE USER):

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 61

http://dev.mysql.com/doc/refman/5.7/en/create-user.html
http://technet.microsoft.com/en-us/library/ms173463.aspx
http://msdn.microsoft.com/en-us/library/office/ff194914.aspx

DATA CONTROL LANGUAGE

SQL Server 2012 (CREATE ROLE):

\’
4.1- The CREATE USER and CREATE ROLE Statements- (cont’d.): QE

4.2- Privileges: @b

Privileges provide various levels of permission to create, edit, and de%atabase objects. The
exact types of permissions that can be granted will vary depending @ e relational database

management system that you are using. You must check your specific RD ocumentation to be sure
which privileges are available. The following table lists commonly u nviIeges that will often be
implemented within relational database management systems that supp@rt®GL statements.

Privilege Description

Allows users to create objects. Often cited as CR @ db_object, where the “db_object”
CREATE parameter is the type of database object that the prigilege allows them to create. Also
cited as CREATE ALL to allow the user to cigaie any type of database object.

B ER db_object, where the “db_object”
he privilege allows them to alter. Also cited
y type of database object.

Allows users to alter objects. Often cited as
ALTER parameter is the type of database object @

as ALTER ALL to allow the user to KN;

Allows users to delete objects. Of ited as DROP db_object, where the “db_object”
DROP parameter is the type of databasg o t that the privilege allows them to delete. Also
cited as DROP ALL to allow the user to delete any type of database object.

INSERT Allows the user to insert r% into a table.
e

UPDATE Allows the user to updﬁ rds within a table.

DELETE Allows the user to c@ records within a table.
SELECT Allows the useﬁelect records within a table.
EXECUTE Allows the uger

xecute a stored procedure or function

4.3- The GRANT Staterynt:

The GR @ment is a DCL statement used by the database administrator or owner to grant
privileges to other ase users and roles. The core SQL of the GRANT statement is shown below. Note
that the “privilg oa arameter is the name of the specific privilege to give, the “db_object” parameter is the
name of the datak@se object to which the privilege is given, the “user_name” parameter is the name of the
[privilege is given, and the “role_name” parameter is the name of the role to which the
privilege iSygivén. Options shown in braces { } indicate that you must make a choice. The pipe symbol | is
used t ate the choices shown. Optional clause are shown as underlined text.

@privilege
ON object

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 62

http://technet.microsoft.com/en-us/library/ms187936.aspx

DATA CONTROL LANGUAGE

TO { user_name | role_name | PUBLIC }
WITH GRANT OPTION

\’
4.3- The GRANT Statement: Qs]

Note that the PUBLIC keyword is used within the statement to grant a named_piivilege to all users of
the database. The optional WITH GRANT OPTION clause is used to allow the us e/ of role to assign the
privilege that they are being given to other users, and should be used with cautiof_E6Fexample, assume a
user is given a privilege using the WITH GRANT OPTION clause and then the¥ ,GRANT that privilege to
other users. If you later REVOKE the original user’s privilege, the users to wh the privilege was granted
will still have access unless there is a CASCADE clause available within OKE statement for your
RDBMS and it is used when issuing the REVOKE statement. Use ca hoosing to apply the WITH
GRANT OPTION clause.

The GRANT statement, as implemented within MySQL 5.7,% rver 2012, and Access 2013 is
shown at the web pages referenced by the following hyperlinks.

MySQL 5.7: Q
SQL Server 2012: §

<

Access 2013: m\'

4.4- The REVOKE Statement:

The REVOKE statement is a DCL @nent used by the database administrator or owner to revoke
privileges from database users and “The core SQL of the REVOKE statement is shown below. Note
that the “privilege” parameter is th e of the specific privilege to remove, the “db_object” parameter is
the name of the database object from which the privilege is removed, the “user_name” parameter is the
name of the user from which t rivilege is removed, and the “role_name” parameter is the name of the
role from which the privilege ved. Options shown in braces { } indicate that you must make a choice.

The pipe symbol | is use ate the choices shown.

REVOKE privilege /
ON db_object
FROM { user_nxo name | PUBLIC }

You sr@check your RDBMS documentation to see if the REVOKE statement, when used in

conjunction e PUBLIC clause, will also revoke the privilege from the object owner or database
administr If it does, you may need to specify the owner’s name in several specific GRANT statements
followin eneral REVOKE. Be careful when using the PUBLIC clause with the REVOKE statement. You
shoul how a PUBLIC clause within a GRANT or REVOKE statement interacts with individually
SPECIfi RANT and REVOKE statements that were previously issued. In some RDBMS implementations,
t illoverride the previous individual statements and in others they will ignore them.

he REVOKE statement, as implemented within MySQL 5.7, SQL Server 2012, and Access 2013 is |

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 63

http://dev.mysql.com/doc/refman/5.7/en/grant.html
http://technet.microsoft.com/en-us/library/ms187965.aspx
http://msdn.microsoft.com/en-us/library/office/ff193820.aspx

DATA CONTROL LANGUAGE

4.4- The REVOKE Statement- (cont’d.): Q

shown at the web pages referenced by the following hyperlinks.

MySQL 5.7: %
SQL Server 2012: @Q

Access 2013:

4.5- The ALTER USER and ALTER ROLE Statements:

You can use the ALTER USER statement in SQL to a formation about a user, which may
include the user’s database password, schema or databas cess,” and login information. Note that this
statement is technically classified as Data Definition Lang®age {DDL), as it defines the objects within the
database. It is only included within this chapter becausem se in conjunction with the DCL statements.
The exact user aspects that can be altered will vary g on the RDBMS used, and you should check
your documentation to see what aspects of the us be altered. The core SQL of the ALTER USER
statement is shown below. Note that the “user n " parameter is the user name of the user to alter and
the “alterations” parameter is the specific alteratio u would like to apply. Note that the WITH clause is
shown within braces as it is not universally ap@-ﬂongst RDBMS implementations.

ALTER USER user_name \
{ WITH } alterations :@

You can also alter existin les” within your RDBMS to add and remove users from being
associated with that role, to rename@e, or to change other attributes of the role in some way. The exact
abilities that are provided bygthe ALTER ROLE statement will vary quite a bit between RDBMS
implementations and you mus %ck your RDBMS documentation to see what options are available. Note
that this statement is alsogte y classified as Data Definition Language (DDL), as it defines the objects
within the database. It is luded within this chapter because of its use in conjunction with the DCL
statements. The core SQL of the ALTER ROLE statement is shown below. Note that the “role_name”
parameter is the name’f the role to alter and the “alterations” parameter is the specific alterations you
would like to a%e that the WITH clause is shown within braces as it is not universally applied

amongst RDBMSN entations.

ALTER ROLE ame
{ WITH } altéTai

ing are hyperlinks that show documentation for the implementation of ALTER USER within
SQL Server 2012, and Access 2013. You will also find documentation on the implementation of
LE within SQL Server 2012. Remember that MySQL 5.7 does not support roles in its SQL.

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 64

http://dev.mysql.com/doc/refman/5.7/en/revoke.html
http://technet.microsoft.com/en-us/library/ms187728.aspx
http://msdn.microsoft.com/en-us/library/office/ff195272.aspx

DATA CONTROL LANGUAGE

4.5- The ALTER USER and ALTER ROLE Statements- (cont’d.): Q
MySQL 5.7 (ALTER USER): O
SQL Server 2012: (ALTER USER):

Access 2013: (ALTER USER):

SQL Server 2012: (ALTER ROLE):

4.6- The DROP USER and DROP ROLE Statements: 6

You can use the DROP USER statement in SQL to delete awser from the database. Note that this
statement is technically classified as Data Definition Languag DL), as it defines the objects within the
database. It only included within this chapter because Ofsi e in conjunction with the DCL statements.
The core SQL of the DROP USER statement is shown . Note that the “user_name” parameter is the

user name of the user to delete. \\

DROP USER user_name @

You can delete existing roles withi @abase by using the DROP ROLE statement. Note that
this statement is technically classified as efinition Language (DDL), as it defines the objects within
the database. It is only included within{t hapter because of its use in conjunction with the DCL
statements. The core SQL of the D% LE statement is shown below. Note that the “role_name”

parameter is the name of the role to ﬁg
DROP ROLE role_name

Below are hyperlinks show documentation for the implementation of DROP USER within
MySQL 5.7, SQL Server % d Access 2013. You will also find documentation on the implementation of

DROP ROLE within SQL r 2012. Remember that MySQL 5.7 does not support roles in its SQL.
MySQL 5.7 (DROP %):
XOP USER)

SQL Server Z(Q
Access 2®OP USER):
@Ver 2012: (DROP ROLE):

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 65

http://dev.mysql.com/doc/refman/5.7/en/alter-user.html
http://technet.microsoft.com/en-us/library/ms176060.aspx
http://msdn.microsoft.com/en-us/library/office/ff197012.aspx
http://technet.microsoft.com/en-us/library/ms189775.aspx
http://dev.mysql.com/doc/refman/5.7/en/drop-user.html
http://technet.microsoft.com/en-us/library/ms189438.aspx
http://msdn.microsoft.com/en-us/library/office/ff193192.aspx
http://technet.microsoft.com/en-us/library/ms174988.aspx

ACTIONS-

DATA CONTROL LANGUAGE .
THE CORE SQL OF THE CREATE USER STATEMENT:
CREATE USER user_name §

THE CORE SQL OF THE CREATE ROLE STATEMENT:

CREATE ROLE role_name

COMMON RDBMS PRIVILEGES:

Privilege Description

Allows users to create objects. Often cited as CRE@object, where the “db_object”
CREATE parameter is the type of database object that the pri allows them to create. Also
cited as CREATE ALL to allow the user to creat%ype of database object.
ER

Allows users to alter objects. Often cited as
ALTER parameter is the type of database object th
as ALTER ALL to allow the user to alter

_object, where the “db_object”
rivilege allows them to alter. Also cited
of database object.

DROP db_object, where the “db_object”
at the privilege allows them to delete. Also
elete any type of database object.

Allows users to delete objects. Ofte

DROP parameter is the type of database o
cited as DROP ALL to allow the uge

a table

INSERT Allows the user to insert recorSsN .
UPDATE Allows the user to update within a table.

DELETE Allows the user to de@cords within a table.
SELECT Allows the user to records within a table.

EXECUTE Allows the user to execute a stored procedure or function

THE CORE SQL OF TH STATEMENT:

GRANT privilege ,

ON db_object

TO { user_nam e | PUBLIC }
WITH GRANT

THE COR THE REVOKE STATEMENT:

REVO ilege

F%user_name | role_name | PUBLIC }

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 66

ACTIONS-

THE CORE SQL OF THE ALTER USER STATEMENT:

DATA CONTROL LANGUAGE , E\é ’
@)

ALTER USER user_name
{ WITH } alterations

THE CORE SQL OF THE ALTER ROLE STATEMENT: Q:

ALTER ROLE role_name
{ WITH } alterations

THE CORE SQL OF THE DROP USER STATEMENT: \

DROP USER user_name

THE CORE SQL OF THE DROP ROLE STATEMENT:

DROP ROLE role_name Q

L 4

N
Ky
N
@
3
<

s\O

o
@Q
>
.

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 67

EXERCISES- \
DATA CONTROL LANGUAGE , i; .
O

Purpose:

1. None.

Exercises: %
1. As SQLite is a self-contained database file system, there are no users or rivileges available
other than the file system privileges on your particular operating syste erefore, there are no

exercises for this chapter. O

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 68

CHAPTER 5- \

TRANSACTION CONTROL LANGUAGE E sé *

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 69

TRANSACTION CONTROL LANGUAGE

5.1- The TRANSACTION Statement: Q

The Transaction Control Language (TCL) statements within SQL are the statement@i to control
a set of Data Manipulation Language (DML) statements that are executed as a single™hit called a
transaction. TCL ensures that either all of the changes made by the DML statements i the transaction
are committed to the database or none of them are. This can help to prevent partial s from a series
of statements from being accomplished. For example, if you wanted to run a series L statements on a
database without TCL statements and you had a power outage or system cras in the middle of the
set, you may only have some of those changes applied to the database. TCL ents ensure that all of
the statements are successfully made within the database or that none of the @ .

Note that while many of the major commands within TCL are fairly=siandard, there is quite a bit of
variation in the execution of the transactions within each RDBMS. % should check your RDBMS
documentation to see what options are available for transactions within §i@ur System.

In SQL, the BEGIN TRANSACTION or START TRANSAC statement is used to initiate a
transaction within an RDBMS. If the transaction statements that fo to execute, then the changes that
were made by the statements can be set back to this poin exact command used to initiate a
transaction will vary by RDBMS, but is most commonly eit BEGIN TRANSACTION or START
TRANSACTION. The core SQL of this statement is s below. Note that the “work” parameter
represents the SQL statements that will be executed within transaction and clauses shown separated by

the pipe symbol indicate that you must select a choic%. O

BEGIN | START TRANSACTION \

work
COMMIT | ROLLBACK

Note that this is a very simplified co Qe SQL involved in creating transactions within multiple

relational database management system MS) and most vendors will have more complex options
available for their TRANSACTION stat . The COMMIT statement is used after the work has been
completed to commit those changes e database. The ROLLBACK statement is used to undo any

changes to the database caused by@/ork back to the point at which the TRANSACTION statement was
initiated.

Below are hyperlinks tq@wveb pages that explain the use of the TRANSACTION statement within
MySQL 5.7, SQL Server 201 ccess 2013.

MySQL 5.7: s\

/

SQL Server 2012 (“@action Statements”- specific statements are within the “In This Section” area):

Access 2013; Q

%‘b

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 70

http://dev.mysql.com/doc/refman/5.7/en/commit.html
http://technet.microsoft.com/en-us/library/ms174377.aspx
http://msdn.microsoft.com/en-us/library/office/ff193241.aspx

ACTIONS-
TRANSACTION CONTROL LANGUAGE

BEGIN | START TRANSACTION
work
COMMIT | ROLLBACK

N

THE CORE SQL OF THE TRANSACTION STATEMENT: Q

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™

71

EXERCISES-

TRANSACTION CONTROL LANGUAGE N

1.

Purpose: Q

To be able to use SQL to make database changes within a transaction for additional ecurity.

1.
2.

W

©

10.
11.

12.
13.

14.
15.

16.
17.

18.
19.

@

Exercises: %

Double-click the “sqlite” file that you extracted in the Exercise at the en hapter 1 to open the
“SQLite” command shell application within either a Command Pro ow within a Windows
operating system or within a Terminal window within the Mac operating\system.

Enter the commands within these Exercises into those windows in @ espective operating system.
Type the following command line into either the Command Profmptaindow or Terminal window to
create and open a new permanent database file called “test.c&n QLite.

Ensure that you have at least completed the Exercise at the end of Chapt%?

.open test.db

Press the “Enter” key on your keyboard to log into the dat e. You should now see your cursor
appear in front of the words ‘sqlite>’ within the window. @II enter the following commands after
that prompt.

Enter the following statement to begin a new transaction. Press the “Enter” key on your keyboard
when you have finished entering the statement.

BEGIN TRANSACTION; L 4

Now you will execute a SELECT statemenx’\/&mine the records within the “Customers” table.
Enter the following SELECT statement in indow and then press the “Enter” key on your
keyboard when finished to view the results

SELECT * FROM Customers;

Now you will delete a record within \Clistomers” table. Enter the following DELETE statement
into the window and then press the4 " key on your keyboard when finished to view the results.
DELETE FROM Customers WH mpanyName ='Rodgers Roofing';

Now you will execute a SELE ement to examine the change within the “Customers” table.

Enter the following SELECT, ent into the window and then press the “Enter’ key on your
keyboard when finished to view the results.

SELECT * FROM Customers;
Now you will use the ﬁLBACK statement to rollback the entire transaction back to how the
database was when GIN TRANSACTION statement was issued, thus undoing the deletion
form the table. En llowing statement into the window and then press the “Enter” key on your
keyboard when finishég to view the results.

ROLLBACK;
Now examinﬁrecords within the “Customers” table to see that the records are intact once again.

Enter thenfo g SELECT statement into the window and then press the “Enter” key on your

keyboar finished to view the results.

SELE OM Customers;

You e the Terminal or Command Prompt window at this point, if desired. Be sure to keep

th t.db’ file that you have created, as you will need it for the upcoming Exercises at the end of
chapter. The Exercises at the end of each chapter build upon one another and must be

% eted in sequential order.

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 72

CHAPTER 6-
SOL FUNCTIONS AND ALIASES

6.1- UNDERSTANDING SGL FUNCTIONS O
6.2- CALCULATED FiELDS AND COLUMN ALIASES

5.3- TABLE ALIASES @Q

N

4

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™

73

SOL FuNCTIONS AND ALIASES

6.1- Understanding SOL Functions: Q

Functions serve a wide range of purposes within SQL. In lesson “3.8- The GROUP lause and
Aggregate Functions,” you learned how you can use aggregate functions to perform ulations on
grouped values within a query. That is one very common use of functions within SQ ever, there are

other types of functions that can serve other purposes within SQL, as well. In thi
about the various types of functions within SQL and how they can be used within que

, you will learn

variations of function names between RDBMS. For example, while almost al
the current date in a function, the name of the function used to accomplis
and Oracle, while it is named GETDATE within SQL Server and DATE wfi
to check the documentation of your specific RDBMS to know which fun
All functions can be classified as being either deterministic

@‘ MS can provide you with
aateis’ SYSDATE within MySQL
Access. Therefore, you need
apnes are available to use.

on-deterministic. A deterministic

function will always return the same result whenever it is used Wity the same set of inputs. A non-
deterministic function may return a different result when used wi same set of inputs. For example, the
SUM function is a deterministic function, as it will always return same result if given the same input

parameters or variables. In contrast, the SYSDATE or GET functions, which are used to retrieve the
current date in MySQL or SQL Server, are non-deterministi nctions as they will return a different answer
when used, even though they use a consistent input.

One reason to know whether a function is 3 stic or non-deterministic is because different
RDBMS will allow for slightly different use of determifigtiC*and non-deterministic functions. For example, in
SQL Server 2012 you cannot create an index omputed column that references non-deterministic

may apply to the use of deterministic and n inistic functions.

functions. You will need to check the document;’o your specific RDBMS to determine what restrictions
te
In lesson “3.8- The GROUP BY CI nd Aggregate Functions,” you learned how aggregate

functions perform calculations on groupe s. Aggregate functions are considered one of the primary
types of functions within SQL. These furigti perform a summarizing operation upon a group of values or
inputs to return a summary value. In ast to this, there are also scalar functions. A scalar function is

performed upon a single value and ws a single value. For example, the SUM function is used to create
a summary value from selected v within a field. However the LOWER function (called LCASE in
Access), will simply return a single field value in all lowercase characters.

You can use scalar fi in many places within SQL. While aggregate functions are most often
used in conjunction wit OUP BY clause, unless it is the only value returned by a SELECT
statement, scalar functio’& more flexibility in where they can be used. You can use scalar functions
within the SELECT clause of @ SELECT statement to create calculated fields, the INSERT INTO clause of
the INSERT statement t/insert calculated values, and many other places within SQL. Below is a listing of
hyperlinks that shov@available scalar functions within MySQL 5.7, SQL Server 2012, and Access 2013.

MySQL 5.7 (FL@and Operator Reference):
SQL Sen@(Scalar functions grouped by categories):

C 13:

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 74

http://dev.mysql.com/doc/refman/5.7/en/func-op-summary-ref.html
http://technet.microsoft.com/en-us/library/ms174318.aspx
http://msdn.microsoft.com/en-us/library/office/ff835353(v=office.15).aspx

SOL FuNCTIONS AND ALIASES

.

6.2- Calculated Fields and Column Aliases: Q
You can use scalar functions within SQL to create calculated fields within SELECT ents. This
allows you to display the result of a calculation within a field in the result set of a query. The Calculation can
refer to columns within the tables selected in the FROM clause of the SELECT statem hen you create
calculated fields, you may want to give the calculated field, also called a “calculated ,” its own name
so that the user will not see the calculated expression as the field name within sult set. You can
change the displayed title of any field within a result set, calculated or not, by column alias. While
calculated fields are most often given column aliases, you can apply an alias field in the result set.
For example, they can be useful to simplify the display name in the result set hnical or overly-long field

names within the source tables.

For example, assume that you are selecting a “QuantitySold” 'Qd a “UnitPrice” field from a
“Sales” table. You want the result set of the query to display these tWe, columns with spaces within their
names and you also want a third column to display the resul Itiplying the values within the
“QuantitySold” and “UnitPrice” columns for each record. You wan rd calculated field in the result set
to have the display name of “Sales Subtotal.” The AS keyword i to apply an alias to a field within the
statement. You could create a simple query that would contain the fallowing SQL.

SELECT QuantitySold AS ‘Quantity Sold’, UnitPrice AS ‘Unit Price’, QuantitySold * UnitPrice AS ‘Sales
Subtotal . O
FROM Sales \

When creating the calculated field, enter \a*culation to perform within the field listing of the
SELECT clause within the SELECT statemen: fQyou want the field to use a column alias, follow the

calculation or field name with the AS keywaqrd aandfthen the name of the column alias within either single or

double quotation marks per your RDBMS s ations. The core SQL of creating calculated fields and

column aliases is shown below. The “tab e” parameter is the name of the table from which you are
extracting the records. The “field_name{patameter is the name of a field within the table referred to by the
“table_name” parameter. The “calcul ield” parameter is the calculation that you want to return as a

field within the result set. The “alias@e” parameter is the name that you want to give to the field.

SELECT field_name, field_nanﬂetc., calculated_field AS ‘alias_name’, etc.

FROM table_name
6.3- Table Aliases: S

You can us aliases in SQL to make referencing table names within complex SQL statements
easier. For ex i/ you have a “CustomerID” field within a “Customers” table and also have a
“CustomerlD” fi ithin a “Sales” table, you must use the dot notation reference of table_name.field_name
for the “Custo field within the SQL statement so that the database will know which “CustomerID” field
you are ref Ing, within the SQL statement. To simplify the SQL statement, you can apply an alias to a
table na implify the table_name.field_name expressions.

ore SQL used to create a table alias within the FROM clause of the SELECT statement is
shown . The “field_name” parameter is the name of a field within a table referred to within the FROM
clau e “table_name” parameter is the name of a table within the database. The “alias_name”

parameter is the alias name that you want to give to the table.

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 75

SOL FuNCTIONS AND ALIASES

SELECT alias_name.field_name, alias_name.field_namel, alias_name.etc.
FROM table_name AS alias_name

\’
6.3- Table Aliases- (cont’d.): Qs

Here is an example from the Exercise at the end of this chapter that shows t
in SQLite. In this case, the tables named “Sales,” “SalesDetails,” and “ltems” have
“S,” “SD,” and “I,” respectively. Note that within a SELECT statement where
assign a table alias, you can substitute the table alias name for the associateI

jases being used
iven the aliases of
eyword is used to
name when needed.

This allows you to simplify the expression when dealing with SELECT state that refer to tables with

very long table names.

SELECT S.Saledate AS Date, I.ltemName AS Product, SUM([Price]’[Q/ AS Amount FROM Sales
AS S INNER JOIN SalesDetails AS SD ON S.SalelD = SD.SalelD I JOIN Items AS | ON LItemID =
SD.lItemID GROUP BY S.Saledate, |.ItemName;

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 76

ACTIONS-
SOL FuNCTIONS AND ALIASES

THE CORE SQL OF THE SELECT STATEMENT WHEN USED TO CREATE CALCULATED F

N

A

4

D

COLUMN ALIASES:

SELECT field_name, field_namel, etc., calculated_field AS ‘alias_name’, etc. O
FROM table_name

THE CORE SQL OF A SELECT STATEMENT USED TO CREATE A TABLE ALI

SELECT alias_name.field_name, alias_name.field_namel, alias_name.etc.
FROM table_name AS alias_name

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™

77

EXERCISES-

SOL FUNCTIONS AND ALIASES . E\é .

Purpose: Q

1. To be able to create queries in SQL that use SQL functions, as well as column and tliases.

Exercises: %

1 Ensure that you have at least completed the Exercise at the end of Chapt Q
2. Double-click the “sqlite” file that you extracted in the Exercise at the en%hapter 1 to open the

“SQLite” command shell application within either a Command Pro ow within a Windows
operating system or within a Terminal window within the Mac operating\system.

Enter the commands within these Exercises into those windows in @ espective operating system.
Type the following command line into either the Command Profmptaindow or Terminal window to
create and open a new permanent database file called “test.c&n QLite.

W

5. .open test.db
6. Press the “Enter” key on your keyboard to log into the dat e. You should now see your cursor
appear in front of the words ‘sqlite>’ within the window. Il enter the following commands after

that prompt.

7. You will now enable headers within the SQL result{display, so that you can see the column alias
names that you will provide in the following queri o this, enter the following command into the
window. Note that this is a SQLite command, QL command, and will not need a semi-colon
at the end of the command to execute it. \

8. .headers ON

9.

Enter the following SELECT statement to v@: e a query that will display the total sales of each
product for each day. Note the use of botfincolumn and table aliases within this SELECT statement.
Press the “Enter” key on your keyb n you have finished entering the statement to view the

results.
10. SELECT S.Saledate AS Date, J. ame AS Product, SUM([Price]*[Quantity]) AS Amount
FROM Sales AS S INNER JOI esDetails AS SD ON S.SalelD = SD.SalelD INNER JOIN

11. Now enter the following SEL! statement to create a query that will display the total sales for each

Items AS | ON L.ltemID = SD@ GROUP BY S.Saledate, l.ItemName;
day. Once again note thc use of table and column aliases within this statement. Press the “Enter”

key on your keyboard w you have finished entering the statement to view the results.
12. SELECT S.Saled te@ te, SUM([Price]*[Quantity]) AS Amount FROM Sales AS S INNER
JOIN SalesDetai& ON S.SalelD = SD.SalelD GROUP BY S.Saledate;
le

13. You can now disab aders within the SQL result display to hide the display of column titles within

queries, if desire@. To do this, enter the following command into the window. Note that this is a
SQLite com , hot an SQL command, and will not need a semi-colon at the end of the command
to execute,it!

14. .headerlx

15. You ¢ e the Terminal or Command Prompt window at this point, if desired. Be sure to keep
the ile that you have created, as you will need it for the upcoming Exercises at the end of

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 78

CHAPTER 7-
VIEWS

7.2- THE CREATE VIEW STATEMENT

7.3- THE ALTER VIEW STATEMEN'

7.4- THE DROP VIEW STATEMENT

©TeachUcomp, Inc.

Mastering Introductory SQL Made Easy™

79

7.1- About Views: Q

A view is a virtual table that is based on the results of a SELECT statement. They ar’ much like
the result set of a query. They always display the most recent data from the underlying tablés from which
they are constructed because whenever a user queries a view, most RDBMS will recre%e view from the
SELECT statement upon which the view is based. A view will often present data fro base tables in
a relational database, which stores data according to the specifications require lational database
design and the rules of normalization, in a more user-friendly format. It is also to query a view by
using the name of the view within the FROM clause of the SELECT st3 t. This allows more
sophisticated end-users to query and access the data they need to view for s within the view, so that
they will not need to access the base tables within the database.

You create views by using the CREATE VIEW statement in SQ
structure of an existing view by using the ALTER VIEW statement.
DROP VIEW statement. Note that all of these statements are co
statements in SQL. However, since you must create a SELECT statement in order to define a view, they
have been included in their own separate chapter within this co @ n this chapter, you will examine how
to implement views in SQL by using the CREATE VIEW, ALTER VIEW, and DROP VIEW statements. Note
that these three statements are classified as being Data De% Language (DDL) statements within SQL.

% can most often change the

They are only being discussed in their own separate chaptefrom the rest of the DDL statements because
you can only create a view after you have learned hO\‘V t the SELECT statementin SQL.

7.2- The CREATE VIEW Statement:

You use the CREATE VIEW statement (Qate a view of the data within your base tables as a
separate virtual table within your database. SQL of the CREATE VIEW statement is shown below.
The “view_name” parameter is the nam new view, and the “select_statement” parameter is the
SELECT statement used to define whic m and fields that will appear within the view.

CREATE VIEW view_name AS
select_statement @

There is some variety o%w implementation within relational database management systems. You
will need to check the speci umentation of your RDBMS to familiarize yourself with any restrictions
placed upon views withi& plication. For example, you can often use an ORDER BY clause when
creating views in MySQL 5,7 put it is generally not permitted within SQL Server 2012. Below are hyperlinks
to web pages that expla'} the implementation of the CREATE VIEW statement in MySQL 5.7, SQL Server
2012, and Access 2 ,

MySQL 5.7: Q\

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 80

http://dev.mysql.com/doc/refman/5.7/en/create-view.html
http://technet.microsoft.com/en-us/library/ms187956.aspx
http://msdn.microsoft.com/en-us/library/office/ff836312.aspx

VIEWS

\’
7.3- The ALTER VIEW Statement: QE

You can redefine the display of data within a named view by issuing the ALTER VI@atement in

SQL. The syntax of this statement is almost exactly the same as the CREATE VIEW state t. The core
SQL of the ALTER VIEW statement is shown below. The “view _name” parameter is th e of the view to
edit and the “select_statement” parameter is the SELECT statement used to define whi cords and fields

will appear within the edited view.

ALTER VIEW view_name AS

select_statement O

Note that you should check your RDBMS documentation for any variations that you can use
in conjunction with the ALTER VIEW statement. For example, you cdn,us e CREATE OR REPLACE

VIEW command to act as a substitute for the ALTER VIEW com within MySQL 5.7. Below are
hyperlinks to web pages that explain the implementation of the A EW statement in MySQL 5.7 and
SQL Server 2012. Note that Access 2013 does not support the R VIEW command. You can issue a
DROP VIEW statement followed by a new CREATE VIEW statem nstead, if needed.

MySQL 5.7: Q

L 2

SQL Server 2012: \\'

7.4- The DROP VIEW Statement: \

The DROP VIEW statement is u emove a named view from a database. The core SQL of the
DROP VIEW statement is shown belo&e ‘view_name” parameter is the name of the view to delete.

DROP VIEW view_name @

Below are hyperlinks to ﬂpages that explain the implementation of the DROP VIEW statement in
@‘

MySQL 5.7, SQL Server ccess 2013.
MySQL 5.7:

/

SQL Server 201\@
Access 2013 Q

%‘b

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 81

http://dev.mysql.com/doc/refman/5.7/en/alter-view.html
http://technet.microsoft.com/en-us/library/ms173846.aspx
http://dev.mysql.com/doc/refman/5.7/en/drop-view.html
http://technet.microsoft.com/en-us/library/ms173492.aspx
http://msdn.microsoft.com/en-us/library/office/ff821409.aspx

ACTIONS-
VIEWS

THE CORE SQL OF THE CREATE VIEW STATEMENT:

CREATE VIEW view_name AS
select_statement

THE CORE SQL OF THE ALTER VIEW STATEMENT:

ALTER VIEW view_name AS
select_statement

THE CORE SQL OF THE DROP VIEW STATEMENT:

DROP VIEW view_name 0\

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™

82

v
y

EXERCISES-

¢

1. To be able to use SQL to create, query, and delete a view within a database.

, VIEWS . é\
Purpose: Q
)

Exercises: %

1 Ensure that you have at least completed the Exercise at the end of Chapt Q
2. Double-click the “sqlite” file that you extracted in the Exercise at the en%hapter 1 to open the

“SQLite” command shell application within either a Command Pro ow within a Windows
operating system or within a Terminal window within the Mac operating\system.

Enter the commands within these Exercises into those windows in @ espective operating system.
Type the following command line into either the Command Profmptaindow or Terminal window to
create and open a new permanent database file called “test.c&n QLite.

W

5. .open test.db

6. Press the “Enter” key on your keyboard to log into the dat e. You should now see your cursor
appear in front of the words ‘sqlite>’ within the window. @II enter the following commands after
that prompt.

7. Now you will create a view the displays the total amg@unttef each sale for all employees. To do this,
enter the statement below into the window and ss the “Enter” key on your keyboard when
you are finished. *

8. CREATE VIEW EmployeeSalesView AS KN'ST Sales.EmployeelD, Employees.FirstName,
Employees.LastName, SalesDetails.S \ ales.Saledate, SUM([Price]*[Quantity]) AS
SaleAmount FROM Sales INNER JOIN@DetaHS ON Sales.SalelD = SalesDetails.SalelD
INNER JOIN Employees ON Emplo .EmployeelD = Sales.EmployeelD GROUP BY
Sales.EmployeelD, Employees\ e, Employees.LastName, SalesDetails.SalelD,

Sales.Saledate;

9. Now you will create a query on tz@s shown within that view. This query will show all sales for
the employee named “Joe Smith. do this, enter the statement below into the window and then
press the “Enter” key on your, rd when you are finished.

10. SELECT * FROM Employe@sView WHERE FirstName ='Joe' AND LastName ='Smith’;

11. Now you will create a query based on the view that shows all sales where the total amount sold was
greater than or equal to%& To do this, enter the statement below into the window and then press
the “Enter” key on yo oard when you are finished.

12. SELECT * FROM eeSalesView WHERE SaleAmount >= 100;

13. Now you will delete view that you just created from the database. To do this, you will use the
DROP VIEW statement. Enter the statement below into the window and then press the “Enter” key
on your key when you are finished.

14. DROP V loyeeSalesView;

15. If you wdelete the database file, you can determine its location within your file system by
enterin @ ollowing SQLite command into the window and then pressing the “Enter” key on your

16.
17. an close the Terminal or Command Prompt window at this point. You have completed the

rcises within this tutorial.

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 83

W

RING INTRODUCTORY SGL MADE EA@WM
INDEX oF COMMON TASKS

The following index uses a “How do I...?” question format to direct users to the associated res

this manual. To find out how to perform a specific task, find the task that you are interested inp rmlng in
SQL within the index below. You can then find the SQL needed to accomplish the selesk on the
associated page or pages.

MASTER

How Do l... ®® Page(s):
<

Allow for only unique values within a table field? 22-23
Change the fields or records that appear in a view? 81
Copy data from one table into another existing table? O 50-51
Create a calculated field in a result set? 75
Create a column alias or field alias? Q 75
Create a database? K 20
Create a field that automatically numbers records within a table? 29-30
Create a foreign key field within a table? 23
Create a primary key field within a table? 23
Create a query? 41-48
Create a query and save it as a new table? 50
Create a query that combines the result sets of two other queries” Q 49
Create a subquery? 51-52
Create a table? P O 20-21
Create a table alias? \ 77
Create a table index? \ 21-22
Create a table join? 47-48
Create a transaction? 70

Create a user? 0 61-62
Delete a table? \ 24-25
Delete a table index? 24-25
Delete users? @ 65

| A 81

Delete a view?

Delete data within a table? 40
Edit a table structure? @ 26-27
Edit users? 64-65
Edit a view? 81
Find empty table values? 27
Filter data in a result set? Q 42-43
Filter grouped records withir& set? 45-47
Group data within a result set? 45-47
Grant user permissions on database objects? 62-63
Insert new records int le? 39
Join tables togethegin e permanent way? 80
Remove user per\ to database objects? 63-64
Restrict which r selected from a table? 42-43
Select colum from a table? 41
Select rows gf data from a table? 42-43
Set properties ofithe fields within a table? 22-24
Show o e records in a result set? 41
Sh t% data within a result set? 45-47
a result set? 44-45

te pecords within a table? 39-40

©TeachUcomp, Inc. Mastering Introductory SQL Made Easy™ 84

